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Bounds and estimates for the overall
plastic behaviour of composites
with strain gradient effects

By V. P. SMYSHLYAEV} AND N. A. FLECK

Cambridge University Engineering Department, Trumpington Street,
Cambridge CB2 1PZ, UK

The macroscopic plastic response is estimated for a composite with each phase satis-
fying a strain gradient constitutive description. In a J> deformation theory of strain
gradient plasticity, the strain energy function is assumed to depend on both the von
Mises strain invariant €, and on a curvature invariant .. For a general coupling
between €, and X, a nonlinear variational principle is formulated generalizing that
of Ponte Castafnieda (1992 J. Mech. Phys. Solids 40, 1757). The minimum principle
is used to derive bounds and estimates for the overall plastic response of statistically
homogeneous and isotropic strain gradient composites. An essential ingredient of the
strategy is the use of previous results of the authors (1994 J. Mech. Phys. Solids
42, 1851) for a linear comparison composite. For a particular coupling between ¢,
and x., suggested earlier by Fleck & Hutchinson (1993), the Hashin—Shtrikman upper
bounds and lower estimates are calculated for a power-law hardening solid (including
the rigid-perfectly plastic limit). The results demonstrate a size effect.

1. Introduction

The size effect observed in plasticity is usually modelled by including gradients of
strain in the constitutive law (Aifantis 1984; Muhlhaus & Aifantis 1991; Zbib &
Aifantis 1992; Fleck & Hutchinson 1993; Fleck et al. 1994). This has the effect of
introducing a material length scale ! into the constitutive relations.

If such theories are used to derive a macroscopic plastic response of a microscopi-
cally heterogeneous composite, it should be expected that the response will depend
on the competition between two length scales: the ‘intrinsic’ length scale [ and the
scale of the microstructure a. The overall properties of the composite are functions
of I/a, which reflects the size effect. The purpose of this paper is to study the macro-
scopic plastic response of composites whose phases satisfy a J, deformation theory of
strain gradient plasticity. In this theory, it is assumed that the strain energy density
depends on both the von Mises strain invariant €, and on a curvature invariant x.. A
physical interpretation of this constitutive law has been given by Fleck et al. (1994).

Much progress has been made on the bounding and estimating of macroscopic
properties of composites: this work has focused on conventional constitutive laws
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796 V. P. Smyshlyaev and N. A. Fleck

which do not account for gradient effects. Most of these bounding techniques are
based on new variational methods laid down by Hashin & Shtrikman (1962, 1963)
for linear problems, and developed further by Willis (1983), Talbot & Willis (1985),
Ponte Castafieda (1991, 1992), Willis (1991) and Talbot & Willis (1994a, b) to include
nonlinear effects. These methods have been developed further to address specifically
problems of determining the effective plastic behaviour of heterogeneous materials
(Ponte Castatieda & De Botton 1992; Suquet 1993; Olson 1994). These homogeniza-
tion methods are based on constitutive descriptions which contain no length scale and
give, therefore, predictions which are independent of the scale of the microstructure.

In our recent paper (Smyshlyaev & Fleck 1994) we have suggested an extension of
the Hashin—Shtrikman procedure to include strain gradient effects for linear compos-
ites. In the present paper we employ these results to derive upper bounds and (lower)
estimates for the overall plastic response of statistically homogeneous and isotropic
strain gradient composites. Our construction is based on a nonlinear variational
principle (§3) generalizing that of Ponte Castaneda (1992) for J, strain gradient
solids. Upon solving a one-dimensional optimization problem by numerical means,
we obtain upper bounds for the effective parameters of the composite with power-law
hardening. In the limit of a rigid—perfectly plastic solid, an explicit upper bound is
achieved for the yield strength of the composite.

Estimates for the effective parameters are also derived by making use of the linear
Hashin—Shtrikman lower bounds for the comparison solid. The results of the study
demonstrate a size effect for the plastic response of two-phase composites. These
results agree with those obtained by Ponte Castafieda (1992), Ponte Castafieda &
De Botton (1992) and Suquet (1993) in the limiting case of a conventional solid
where strain gradient effects vanish.

2. Formulation

(a) Basic equations
We consider a heterogeneous nonlinear ‘strain gradient’ solid occupying a volume
V with boundary S. In a deformation theory of strain gradient plasticity, the strain
energy density w at each point & of V is assumed to depend upon both the strain
tensor € and the curvature tensor x. The tensors € and x are derived kinematically
from the displacement field w and the rotation field 8 via

e = 3 (ig + ui),  Xij = i,
where 6 in turn is derived from the displacement as 6; = Le;;xuy,;, i.e. 6 = 3 curl(uw).
Simple manipulations give
Xij = €ikl€ ik,
which means that both the strain and certain combinations of the strain gradient
are involved in the constitutive description. Note that the rotation 8 is the material
rotation: we are concerned with the so-called reduced couple stress theory.

A strain gradient analogue of J, theory for isotropic and incompressible solids
assumes that w depends only on the von Mises strain invariant

/2
Ee = §6ij6ij

and curvature invariants. Since the curvature tensor :xy is unsymmetric, it has, in
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The overall plastic behaviour of composites with strain gradient effects 797

fact, two independent J, invariants

xi= /B amd xt=\/Exi,

according to decomposition of x into the symmetric part x* and the antisymmetric
part x?
Xij = %(Xij +Xji)y  Xij = %(Xij — Xji)-
In order to deal with a single length scale within the constitutive law, we assume
that there is no dependence of w on the antisymmetric component x?, so that

w = w(xT; e, X3)- (2.1)

A dependence of w upon both x*® and x® can be developed without serious difficulties,
but at the expense of unnecessary complication. In the remainder of the paper (2.1)
is enforced; the superscript ‘s’ is omitted and the symmetric curvature is introduced
as

Xij = %(9@1‘ +05:) = %(eiklﬂj,k + €jkiEiik)-
It is further supposed that the function w is smooth and convex in €, and x., for each

x € V. The deviatoric stress s and couple stress m are defined as work conjugates
of £ and x respectively:
ow 20w g ow 20w xyj
Sij = =5ET Ty My = =z -
Ocij 30ee ¢ OXij 30Xe Xe
We shall make extensive use of a power-law description along the lines of that
given by Fleck & Hutchinson (1993), so that

(n+1)/n
n E(Ee) Xe
w(£eaXe) = n+ 12080 ( ( EOX )) ) (23)

(2.2)

where x. = x5 and

£=(2+22)" (2.4)
The scalar strain measure £ is a natural measure of total dislocation density, as
discussed by Fleck et al. (1994). In (2.4), [ is an ‘intrinsic’ material length scale
interpreted as a free slip distance between statistically stored dislocations; n is the
hardening index and ranges from unity to infinity. In particular, for the linear case,
n =1 and (2.3) assumes the form

WL (e, Xe) = SHE® = Spel + Jul®x2 (2.5)
and
sij = 2/1/51'3'7 mij = 2#‘[2)(7;]" (26)
Note that assumption (2.1) implies that m is symmetric.
It is also natural to introduce a kinematic assumption of continuity of the displace-
ment u and the rotation 6 throughout V including interfaces. This is equivalent to
the statement that the phases are perfectly bonded. We call such displacement fields

‘kinematically admissible’.
Now consider the energy functional

W(u):/‘/w(m;ee(u),xe(u))dx

Proc. R. Soc. Lond. A (1995)



798 V. P. Smyshlyaev and N. A. Fleck

within the class of kinematically admissible displacement fields, which satisfy pre-
scribed boundary conditions. Stationarity of this functional recovers the equations
of couple stress theory (see, for example, Fleck & Hutchinson 1993; Smyshlyaev &
Fleck 1994). The equation of equilibrium reads

0ji,j + Tjij = 0.
Here the symmetric part o of the stress tensor is related to its deviatoric part s via
0ij = 8ij + 6ijon,

and oy, () is the hydrostatic stress. The antisymmetric part T of the stress tensor is
defined by

Tji = — 5€kjiMph,p- (2.7)

Note that, in couple stress theory, (2.7) is a restatement of moment equilibrium.
Attention is focused on the response of a composite material occupying the volume
V', subjected to ‘uniform strain’ boundary conditions

U; = 6?]«.’Ej, 97, =0 (28)

over the boundary S. The composite is regarded as a microscopically heterogeneous
but macroscopically homogeneous body, with a microstructural dimension a that
is small compared to the size of the volume. Therefore, €° in (2.8) plays the part
of a ‘macroscopic’ strain: it is the uniform strain which a homogeneous material
would experience under displacement conditions (2.8). We emphasize here that un-
der boundary conditions (2.8), the macroscopic strain is constant and therefore the
macroscopic curvature is zero. The microscopic (local) curvature and couple stress,
however, do not vanish.

Our objective is to deduce effective properties of the composite via an estimation
of the strain energy W of the composite, where

W:/Vw(a:;se(w),xe(w))dw. (2.9)

This is performed using variational principles for the strain energy (2.9). We give
here a brief account of available results.

(b) Minimum energy principle and the Voigt bound

A minimum principle may be stated for W (see, for example, Fleck & Hutchinson
1993) provided the strain energy density is strictly convex with respect to (e, x) at
each point € V. This nonlinear minimum principle generalizes that given by Koiter
(1964) for linear solids. It states that the ‘true’ energy W minimizes the functional
W (u) within the class of kinematically admissible fields u satisfying the boundary
conditions (2.8):

W < W(u). (2.10)
The Voigt upper bound follows by substituting u°(x) (see (2.8)) into the right-hand
side of (2.10):

W <
where
sz/w(m;ag,O)dm.
%
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The overall plastic behaviour of composites with strain gradient effects 799

For the case of an N-phase composite with the energy densities wq,ws, ..., wy and
volume fractions ¢y, cs, ..., cy, we have
Wy = [VIZE, cjw;(z; 2, 0). (2.11)

Consider now a two-phase power-law composite with each phase described by the
energy density function (2.3), (2.4) with common hardening indez n (1 < n < co) and
common normalizing parameter &o. The properties of the phases are characterized
by the ‘strength’ parameters X @) and the length scale parameters [;; j = 1,2. It is
also expected that the comp031te itself shows a power-law behaviour (2.3), (2. 4) with
the effective parameters X*, [*. In particular, under the ‘uniform strain’ boundary
conditions (2.8), the macroscopic strain energy W assumes the form

lVl——Z & < e )1+m, (2.12)

o
where m = 1/n is in the range 0 < m < 1. Then the Voigt bound (2.11) reads
5 < e B 4 e 5?. (2.13)

(¢) Minimum complementary energy principle and the Reuss bound

The complementary minimum principle has also been introduced by Fleck &
Hutchinson (1993). Define at each point « a stress potential ¢(x; o, m) as a dual to

w(e, x):

¢(x;0,m) = Hslf;X{Uz‘jEij + mijxi; — w(®;€, %)} (2.14)
Note that ¢ is finite as long as w is strictly convex. Elementary considerations show
that the potential ¢ is a function of

_ . /3 __ /3
O¢ = 581'1'81']' and me = §mijmij,

where o, is the von Mises effective stress and m, is the analogous effective couple
stress.
Consider a composite of volume V with boundary conditions

N0 + NiTij = Ty 0?37 nym;; = 0, (2.15)
i.e. with prescibed ‘uniform stress’ tractions on S. Define the complementary energy
by
P(o,m) = / ¢(o,m)de. (2.16)
v

The complementary minimum principle states that, for all statically admissible fields
compatible with (2.15), the ‘true’ complementary energy ¢ minimizes the functional
(2.16):

& < &(o,m). (2.17)

The Reuss bound for @ now follows by substituting o (z) = ¢, m = 0 into the
right-hand side:

where

Proc. R. Soc. Lond. A (1995)



800 V. P. Smyshlyaev and N. A. Fleck
For an N-phase composite
Op = V| ZX c;pi(x;02,0), (2.18)

where the ¢; are defined from w; via (2.14).
For the power-law case (2.3), the stress potential for each phase reads

1 5 n+1
om)=——EX [ = ,
¢( ) n + 1 00 <2())
where
2= (02 +172m?)1/?
is a scalar stress measure. Assuming that the effective strength parameter X* for the
composite is determined via

B 0 n+1
= V] — 502*<"e> ,

n+1 ¥
we arrive at the Reuss lower bound for an isotropic power-law composite
r = ER)
where
—-1/n
_ C1 C2
In the rigid/perfectly plastic limit (n — 00), (2.19) transforms to
Sk = min{ ", T3, (2.20)

It is worth emphasizing that the elementary bounds (2.11) and (2.18) do not
capture the size effect, i.e. they are insensitive to the scale of the microstructure.
Smyshlyaev & Fleck (1994) have demonstrated that, in the linear case, an extension
of the Hashin—Shtrikman technique does capture the size effect, as summarized in
the next section.

(d) Linear Hashin-Shtrikman bounds

Smyshlyaev & Fleck (1994) have established a Hashin—Shtrikman-type variational
principle for strain gradient composites and applied it to derive Hashin—Shtrikman
bounds for linear statistically homogeneous and isotropic incompressible two-phase
composites. We reproduce here the bounds.

In the linear case, the strain energy function assumes the form (2.5) and the con-
stitutive relations are given by (2.6). The effective shear modulus p* of an isotropic
composite is defined as

Wy = WV led;ed;, (2.21)

where Wy, is the true stored energy of the linear composite under the boundary
conditions (2.8), i.e. under the uniform macroscopic strain &°.

Explicit expressions for upper and lower bounds were given by Smyshlyaev & Fleck
(1994) in terms of the moduli of the phases (u1, 1) and (uz, l2), volume fractions ¢,
and cp, and a correlation coefficient

h(lz]) = (P1(2) = cf)/(cica).
Proc. R. Soc. Lond. A (1995)



The overall plastic behaviour of composites with strain gradient effects 801

Here ¥;;(2) is a two-point correlation function describing a probability of finding
both the point « and the point « + 2z in phase one. By definition, h(0) = 1; isotropy
ensures that A depends only on the length of the vector z.

The lower Hashin-Shtrikman bound g4 and the upper Hashin—Shtrikman bound
piis for the effective shear modulus p* read

pis < p° < s
o=l €2 } .
pis = 1 GG e T ) (222
_ C1
= 1 . .
Hus = 12 { " (p2/ (1 — p2)) + catp™ } (2.23)

It has been assumed here that u; > ps without loss of generality. The parameters
1 and ¢~ are defined by

¢+ = ¢(1+)7 YT = 1/)([»)’ (2'24)

I* = max {zl, 1 /‘—‘312} , 1~ =min {12, , /Elll} (2.25)
251 H2

and the function v (l) is related to the correlation coefficient h by

where

() =2 /O m e 2th(lt)t dt. (2.26)

In the limit [ — 0, (1) — ¥(0) = £ and (2.22), (2.23) transform into the conventional
Hashin—-Shtrikman (1963) bounds.

It is worth emphasizing that the Hashin—Shtrikman variational principle developed
by Smyshlyaev & Fleck (1994, §3) does not necessarily assume that the phases are
linear. This should lead to a direct derivation of nonlinear bounds following the
pattern of Willis (1983, 1991), and Talbot & Willis (1985). We prefer here, however,
to develop a strain gradient version of an elegant nonlinear variational principle
suggested by Ponte Castafnieda (1992).

3. A nonlinear variational principle

The underlying idea behind the analysis of Ponte Castaneda (1991, 1992) is that
a nonlinear solid behaves like an instantaneously linear one with the same secant
modulus. Indeed, comparison of (2.2) and (2.6) demonstrates that

_ o low(ee,xe) 1
fi(z) = 5———_(%:& E_e

plays the part of the instantaneous shear modulus; similarly, the instantaneous length
scale is determined from

(3.1)

o 10w(ge, xe) 1
)P (x) = 2 —22% . —, 3.2
@) = 5= X (3:2)
This simple observation means that a nonlinear solid under prescribed boundary
conditions experiences the same response as a linear inhomogeneous couple stress
solid with variable parameters ji(x) and [(x) determined from (3.1) and (3.2). In
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802 V. P. Smyshlyaev and N. A. Fleck

other words, if we know ji() and /(x) and could also solve the linear problem, we
would also know the solution to the nonlinear problem.

Suppose ji(x) and [(x) are known. The strain energy W for the nonlinear solid
under boundary conditions (2.8) is related to the strain energy Wy, for the linear solid
with spartially varying properties (fi(x),!(z)) and the same boundary conditions by

tvzﬁ@+/ﬁﬂ@gwyamfm&ym. (3.3)
v
Here the correction term U is defined via (2.5) as
U(@; 1,1, &e, Xe) = w(®; Eo(®), Xe(@)) — ()23 () — () () %5 (w).
(Here and elsewhere, the tilde symbol denotes the true value of any quantity.)
We follow Ponte Castafieda (1992) by assuming that w(x; ee, Xe) grows slower than
quadratically with respect to €., Xe, and, moreover, is concave with respect to the

new variables p = €2, ¢ = x2. This is usually the case for plasticity with hardeningt,
e.g. for the power law (2.3) of Fleck & Hutchinson (1993). Further, introduce the

function U(x; fi, 1) defined by
U(z; i, 1) = max{w(®; ee, Xo) — Sl — %[szg}. (3.4)
€esXe

Equality of U and U is ensured by the definitions (3.1) and (3.2) of ji(x) and I(z),
which provide the extremum conditions for the right-hand side of (3.4).
Combination of (3.3) and (3.4) gives

W = Wili@).i@) + [ Ulasite). (@) do (3.5)

with fi(x), [(x) given by (3.1), (3.2).

We shall now argue that the left-hand side of (3.5) is less than or equal to the
right-hand side for arbitrary p(x) and I(x) within the volume V.

We start by considering an arbitrary u(x) and l(x), and an arbitrary kinematically
admissible displacement field u(x), which satisfies the boundary conditions (2.8).
Then by the definition (3.4) of U we have

U(‘”;#(w)a l(:l:)) P w(m,ee(u),xe(u)) - wL(U(“’)? l(.’B),’LL),

where the strain energy density for the linear solid wy, is defined via (2.5). Integration
of the above inequality over V' gives

Aymmmgkm@@ﬂ@wm+Lmem@y (3.6)

Next, take the minimum value of both sides of (3.6) over all possible kinematically ad-
missible u(z) which satisfy the boundary conditions. The minimum value of [, w da

is W by (2.10), and the minimum value of f;, widx is Wy, by the same argument.
As a result,

W < Wh(u(@), i(z)) + /V Ue, u(@), (z))dz (3.7)

t The variational procedure which follows is easily generalized to energy functions without the con-
cavity restriction with the (<) inequality instead of the equality in the final result (3.8).
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The overall plastic behaviour of composites with strain gradient effects 803

for arbitrary p(z) and I(z).
By combining (3.5) and (3.7), we arrive finally at

W= min {W@.i@)+ [ UEae.ie)a),  6s)
u(x),l(x) 1%

and the minimum is attained for the true fields ji(z) and I(z), as defined by (3.1)

and (3.2).

The variational statement (3.8) is a strain gradient version of that introduced by
Ponte Castaneda (1992) for conventional solids. It is regarded as a starting point for
the derivation of upper bounds for the strain energy W by a suitable choice of linear
parameters pu(x) and [(x), subject to the availability of appropriate ‘linear’ bounds
for Wy, The quality of the bounds depends upon the amount of available information
on the microstructure. Basically, the more information that is available, the tighter
are the bounds which can be derived, at the expense, however, of more elaborate
computations. We focus in the sequel on the derivation of ‘nonlinear’ bounds of
Hashin—-Shtrikman type for statistically homogeneous and isotropic incompressible
two-phase composites with prescribed volume fractions and a two-point correlation
function. To this end, we can employ in (3.8) the ‘linear’ results of Smyshlyaev &
Fleck (1994), as summarized in §2ec.

Similar methods can be developed for bounding of the nonlinear complementary
energy &, starting from the complementary minimum principle (2.17); this is not
pursued here.

4. Bounds and estimates for power-law plasticity

Consider a statistically homogeneous and isotropic composite with two nonlinear
phases specified by the energy densities w; and ws. If the only available statistical
information is volume fractions and a two-point correlation function, a natural option
is to choose the trial parameters u(x) and {(x) to be piecewise constant within each
phase:

@) = i fi(z) + fafo(z), Uz) =l fi(z) + o fo(z).
Here fi(x) and f2(x) are characteristic functions of phases one and two, respectively:
fi(x) = 1 if  belongs to phase one; fi(x) = 0 otherwise; and fo(z) = 1 — fi(x).
The variational statement (3.8) gives

W < Wi (i, ly; fia, I2) + 1| VUL (fin, 1) + 2|V |Uz(fiz, 1) (4.1)

for any ﬂj, l}, j =1,2.In (4.1), Wy, is the strain energy stored in a linear two-phase
‘comparison’ compos1te with the same geometrical arrangement of phases and with
the properties 1,/ and fi, [, of phases one and two, respectively. The duals U; and
U, emerge from definiton (3.4) with w replaced by w; and ws.

(a) Nonlinear Hashin-Shtrikman bounds

Both W and W, in inequality (4.1) depend on the microstructure. Upon assuming
statistical homogeneity and by taking the representative volume V' to be much larger
than the scale of the microstructure, the i{lequality in (4.1) is preserved upon taking

a statistical average. Further, the energy Wy, of the linear composite can be bounded
by (2.21) and (2.22), which makes use of the results of Smyshlyaev & Fleck (1994):

W < Wils (i, b fiz, b2) + 1| VUL (i, 1y) + 2|V [Uz(fia, b2). (4.2)
Proc. R. Soc. Lond. A (1995)



804 V. P. Smyshlyaev and N. A. Fleck

Here

WI?S - I'LHSIV|€Zj YR
and pjfig is given explicitly by (2.22), (2.24)—(2.26) with py = fi1, po = fio, l1 = 4
and Iy = 52, provided fi; < fio. If iy > fig, there is a straightforward interchange of
the indices.

Inequality (4.2) represents a family of upper bounds for a nonlinear strain energy
function W, for arbitrary linear parameters fiq, 1, fiz and [5. Its further optimization
with respect to these parameters requires explicit analysis of the dual potentials U;
and U,. For the case of power-law strain gradient plasticity (2.3), (2.4), the duals U;
and U, are calculated explicitly as follows. The dual potentials introduced by (3.4)
specialize for power-law hardening (2.3) to

L m m 3 3
Uj(fj,1;) = max { +1 80 (e +l2 2)(1+ W2 — SHjce __/1’][2 }a

5egXe>0 2 2
ji=12.
Straightforward analytical procedure gives
Uo(us, 7, if ;> 1,
Ui (fi, 1) = 2 . (4.3)
VANV ERN] UO l% E(J) , iflj <lj,
J

where

2 1+m

The obJectlve is to minimize the right-hand side of (4 2) by a suitable choice of
parameters /i, ll, (Lf lg, Wlth Uj, 7 = 1,2 explicitly given by (4.3). Fixed values
are assumed for X’ =1, 2 and m = 1/n is taken in the range 0 < m < 1.
The power-law self snnllarlty and a particular form of coupling via the scalar strain
measure (2.4) permit us to reduce this four-dimensional optimization problem to
that with one variable (see the Appendix). The resulting upper bound for £* reads

< S,

- £ = 3 1—m 1 2/(1-m) 22/(1—777,)
0(.“'7 ) =35 3Em ’u(l+m)/(1—~m)'

where
Sis = min{Z®, ¥} (4.4)
andf

- ¢ (1+m)/2
YW = min {1 — }
0<H<1 (1/(1 =) = i (Me

572/ (1=m) }(1“’")/2
)

2/(1-m) 2
{c 21 + 2 Ty

@ o (1+m)/2
2% = min {1 — }
02 T WA 7)) — 43 (e

1 We write henceforth X; and X5 instead of Eél) and 2(52) to simplify the notation.
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The overall plastic behaviour of composites with strain gradient effects 805

2/(1-m) (—m)/2
2/(1-m) 2y
X {0222 +Clm} (45)
The functions ;" () and 3 () are defined by
PF () =9, 3 () =v(3), (4.6)
with
v = max{li,/Yl2}, & = max{lz, 71}, 4.7

and the function (-) defined by (2.26).

The value of Xty can be easily computed numerically from (4.4), (4.5), (4.7) and
(2.26) for chosen parameters of the phases and the correlation function h. They can
be however simplified further in the limit n — oo ( m — 0) which corresponds to a
rigid—perfectly plastic composite.

(i) Bounds for rigid—perfectly plastic limit

When the hardening index n tends to infinity, expression (2.3) for the strain energy
function transforms to
and the parameter Xy plays the part of the yield strength of a rigid—perfectly plastic
strain gradient body. A straightforward formulation for the strain energy (4.8) suffers
from the drawback that the function w(e,x) is not strictly convex. We avoid related
discussion, regarding (4.8) as a limiting case of (2.3). Then the expressions (4.5) for
the Hashin—Shtrikman upper bound reduce to

® e 1/2 , 52 1/2
YW = mi 1- X+ c—= , 4.9
“{ 1/(1—7)—¢T(7)cl} { e } (149)

o 1/2 52y 1/2
2® = min {1— } {c Ii+ec 4} , (410
oot U /A=y —vimeS 17Ty (4.10)
Consider a ‘well-ordered’ composite where I; > [y for the case X} > X,. Then,
¥ (y) = ¥(l;) = ¥t from the definitions (4.6) and (4.7), which is a constant in-
dependent of . Consequently, the minimization in (4.9) and (4.10) can be done
explicitly by differentiation with respect to . Then relation (4.4) provides, via rou-
tine analytical manipulations, the following explicit bound for Xy:

St e mw_w (ﬁ)r"_cw*(l—w*). (4.11)

22 - 1-— Clw+ 1-— Clw"' 22 (1 — Clw+>2

In the conventional limit (! — 0), ¥+ — 2 and (4.11) reproduces the results of Ponte
Castaneda & De Botton (1992, formula (15)) and Suquet (1993, formula (3.16)) for
the effective yield stress of a rigid—perfectly plastic composite.

(b) Hashin-Shtrikman (lower) estimates

A similar prescription to obtain Hashin—Shtrikman lower bounds for power-law
composites (2.3) is not availablef. Instead, estimates can be derived based on the

t Talbot & Willis (1994a, b) have recently suggested a new extension of the Hashin—Shtrikman method-
ology using a nonlinear ‘comparison medium’, which permits derivation of both upper and lower bounds.
Possibility of an extension of their method to strain gradient composites is not discussed here.
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linear Hashin—-Shtrikman lower bounds in a way suggested by Ponte Castaneda &
De Botton (1992) for conventional composites. Their idea is to substitute into (4.1)
the lower bound (2.21), (2.23) for Wy, and then to minimize the right-hand side
with respect to (fi1, fi2,l1,l2). The expectation is that the opposite tendencies of
overestimation provided by inequality (4.2) and of underestimation provided by the
bounds (2.21), (2.23) tend to cancel each other. Performing finite element calculations
for a particular packing of spheres, Suquet (1993) found that in some cases the
estimate is indeed in relatively good agreement with the results of direct calculations.

Manipulations similar to those employed for the derivation of the upper bounds
(see the Appendix) give the following expressions for the estimates:

L = min{ZM, 5@}, (4.12)

" " (1+m)/2
By in {1+ _ }
0<y<1 /(1 =) + Y1 (v)e2

><{62222/(1~m) + cl212/(1—m),y(1+m)/(1—m)}(1—m)/27

o o (1+m)/2
2y¥ = min {1+ — }
0<y<1 v/ (L =)+ (v)er
% {ey B/ 4 o, 2/0m) ) fGmmy aem2 (4 13)
1/); = ¢(l;)7 ¢; = ¢(15), l; = min{l?vlyul/zll}v l2_ = min{l177_1/2l2}'
This permits a simple numerical calculation of the estimates.
Also, for the rigid-plastic limit n — oo (m — 0), the explicit expressions for

estimates of the effective yield strength are available provided the phases are well-
ordered (21 2 22,11 2 l2)2

(o <_.>;>+ -9~y (1-9y) (g)
1—cop \ 2 2 1—cop™ (I=cp™)? \2p) "
2* _ —_
e = if 14 1 wj/’ o < % <1, (4.14)

1 e 2 _ 1—9~
l+e [ ——1), if 22« 1+ ,
\\/ 1<1/)_ ) 121 d} 1/)_ “

Il
B

N

where

’Lp- = ’Lp(lz)
In the conventional limit { — 0, ¢/~ — 2/5 and (4.14) conforms to ‘conventional’
estimates of Ponte Castafeda & De Botton (1992, formula (16)).

5. Numerical results
The correlation function has been taken as
h(|z]) = e7I#l/e,

where a is a correlation length parameter which specifies the scale of the microstruc-
ture. Both the Hashin—Shtrikman upper bounds and the lower estimates have been
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Voigt bound

la

Figure 1. Effect of the ratio of length scales {/a upon the Hashin-Shtrikman upper bounds and
(lower) estimates. Results are shown for ¢; = 0.3, 2y = 5%, l1 =l = and hardening indices
n varying from n = 1 (linear case) to n = oo (rigid—perfectly plastic case).

computed. They lie between the elementary Voigt and Reuss bounds, calculated via
(2.13), (2.19) and (2.20).

Some representative results are given in figures 1-3 for the Hashin—Shtrikman
upper bounds and lower estimetes of the macroscopic strength X of a two-phase
composite; Voigt and Reuss bounds are included for completeness. Figure 1 shows
the effect upon the effective strength X' of the scale of the microstructure a in relation
to the material length scale [; results are given for ¢; = 0.3, Xy /X = 5,11 =1y =1
and n in the range 1 < n < oco. It is clear from figure 1 that the Hashin—Shtrikman
upper bound and lower estimate approach the upper bound with increasing [/a.

The efffect of concentration ¢; upon the macroscopic strength is given in figure 2
for Iy =l = | = a and for the conventional limit [; = I, = [ = 0. We note that the
Voigt and Reuss bounds are independent of length scale [/a, and that the Hashin—
Shtrikman upper bound lies close to the Voigt bound for both {; =l = = a and
l; = Iy = 1 = 0: the size effect is relatively small.

Figure 3 displays the bounds and estimates as a function of hardening index n, for
li=1l=1=aand l; =l =1 = 0. The Hashin—Shtrikman upper bound increases
with increasing n and Hashin—Shtrikman lower estimate decreses with increasing n.
The degree of strengthening due to the size effect is fairly insensitive to the value of n.

We conclude from the numerical results that the Hashin—Shtrikman upper bound
strength increases by up to 10%, as [/a is increased from zero to unity, for all n
and ¢; considered. By comparison, the Hashin—Shtrikman lower estimate of strength
increases by up to 20% as l/a is increased from zero to unity.

6. Concluding remarks

We have shown that the macroscopic plastic response of a two-phase strain gra-
dient composite depends upon the ratio of the intrinsic length scale [ and the scale
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Hashin—Shtrikman
upper bounds:
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— -—- Reuss bounds
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n=1l / i
\3"/ / |
: /
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2 nes 7 !L
30

—"n=10

——

Figure 2. Effect of concentration ¢; upon the macroscopic strength X. Results are shown for
both l/a =0 and l/a =1, with {y =l =l and X1 /5 = 5.

T T T T r T T ' j j
Voigt bound
................. OO
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2F = =——o S e e l/a=0 1
Hashin—Shtrikman lja=1
z upper bounds
x, Hashin—Shtrikman
estimates lla =_0 _______
1.5 T )
- Reuss bound _ . __.
/ rigid plaS/tl'C’ —_ linear
1 — 1 ) | ] 1 | 1 \
0 0.2 0.4 0.6 0.8 1
lla

Figure 3. Bounds and estimates for the macroscopic strength X as a function of the hardening
index n, for Xy = 5%, 13 =1l =1l and ¢; = 0.3.

of the microstructure a. The ‘accuracy’ of the bounds depends on the amount of
available information on the microstructure. The more information is available, the
tighter the bounds can be derived in principle, at the expense, however, of more
elaborate computations. We have chosen here a simple option leading to constant
trial parameters p(x) and [(x) for the nonlinear variational principle, as well as to
constant trial polarizations in the linear case (Smyshlyaev & Fleck 1994), provided

Proc. R. Soc. Lond. A (1995)



The overall plastic behaviour of composites with strain gradient effects 809

minimal statistical information is available. Tighter bounds could be derived us-
ing non-constant polarizations and/or non-constant parameters p(x), I(x), provided
more statistical or morphological information on the microstructure is available. This
would require additional computational effort.

The authors are grateful for financial support from the US Office of Naval Research, under
contract number N00014-91-J-1916. The authors appreciate helpful discussions with Professor
J. R. Willis, Professor P. Ponte Castafieda and Professor M. Suquet.

Appendix A. Optimization

We seek to minimize the right-hand side of (4.2) by a suitable choice of the pa-
rameters (11,1,11,2,11,12) for U; and U, given by (4 3).

We argue first that the best choice is to take l1 =1, l2 = [,. This reflects the fact
that the instantaneous length scale I(x) determined from (3.1) and (3.2) equals the
material length scale [ if the strain energy function w depends on €, and x. via the
scalar strain measure (2.4). This is easily verified by substituting w = w(€(ee, Xe))
into (3.1), (3.2) and performing differentiations. This observation permits us to sup-
pose that [, = I, I, = I, does provide the best choice. A straightforward proof of this
fact has also been obtained by a direct analysis of the explicit formulae (4.2), (2.22)-
(2.25) and (4.3). As a result the four-dimensional optimization problem reduces to
that with two variables i1 and fio.

Assuming that fi; > fip, the right-hand side of (4.2) specializes via (2.22)—(2.25)
and (4.3) to

3. 0y2, C2 3 1-m/( 1 2/(1=m)
S e e SRR E= )

RS P Y E I i A1l
X AaEmy/a-m) | 1 2 Trmya—m) [ (A1)

where v = fio/f11, 0 < v < 1 and 95 (7) is given by (4.6)—-(4.7).

Minimization of (A 1) with respect to fi; > 0, and regarding 7 as an independent
constant parametert, leads to a bound X for the effective strength parameter X*
in (2.12). This minimization process is stated in (4.9).

Similarly, the bound X in (4.10) is derived from the alternative assumption
fiz > fi1. Finally, the Hashin—Shtriknam bound (4.4) is taken as the minimum of
21 and X,

Derivation of the formulae (4.12)—(4.14) for the lower estimates follows the same
formal pattern, as based on explicit formulae for the linear lower bound (2.23).

References
Aifantis, E. C. 1984 On the microstructural origin of certain inelastic models. J. Engng Mater.
Technol. 106, 326-330.

Fleck, N. A. & Hutchinson, J. W. 1993 A phenomenological theory for strain gradient effects in
plasticity. J. Mech. Phys. Solids 41, 1825-1857.

Fleck, N. A., Muller, G. M., Ashby, M. F. & Hutchinson, J. W. 1994 Strain gradient plasticity:
theory and experiment. Acta Metall. Mater. 42, 475-487.

t This employs in effect the power-law éelf-similarity as discussed by Suquet (1993).

Proc. R. Soc. Lond. A (1995)



810 V. P. Smyshlyaev and N. A. Fleck

Hashin, Z. & Shtrikman, S. 1962 On some variational principles in anisotropic and inhomoge-
neous elasticity, J. Mech. Phys. Solids 10, 335-342.

Hashin, Z. & Shtrikman, S. 1963 A variational approach to the theory of elastic behaviour of
multiphase materials. J. Mech. Phys. Solids 11, 127-140.

Koiter, W. T. 1964 Couple stresses in the theory of elasticity. I and II. Proc. Ned. Acad. Wet.
B67, 17-44.

Mubhlhaus, H. B. & Aifantis, E. C. 1991 A variational principle for gradient plasticity. Int. J.
Solids Struct. 28, 845-857.

Olson, T. 1994 Improvements on Taylor’s upper bound for rigid-plastic composites, Mater. Sci.
Engng A 175, 15-20.

Ponte Castafieda, P. 1991 The efffective mechanical properties of nonlinear isotropic composites,
J. Mech. Phys. Solids 39, 45-71.

Ponte Castafieda, P. 1992 New variational principles in plasticity and their application to com-
posite materials. J. Mech. Phys. Solids 40, 1757-1788.

Ponte Castafieda, P. & De Botton, G. 1992 On the homogenized yield strength of two-phase
composites. Proc. R. Soc. Lond. A 438, 419-431.

Smyshlyaev, V. P. & Fleck, N. A. 1994 Bounds and estimates for linear composites with strain
gradient effects. J. Mech. Phys. Solids 42, 1851-1882.

Suquet, P. M. 1992 Overall potentials and extremal surfaces of power law and ideally plastic
composites. J. Mech. Phys. Solids 40, 1757-1788.

Talbot, D. R. S. & Willis, J. R. 1985 Variational principles for inhomogeneous nonlinear media.
IMA J. Appl. Math. 35, 39-54.

Talbot, D. R. S. & Willis, J. R. 1994a Upper and lower bounds for the overall properties of
nonlinear composite dielectrics. I. Random microgeometry. Proc. R. Soc. Lond. A 447, 365~
384.

Talbot, D. R. S. & Willis, J. R. 1994b Upper and lower bounds for the overall properties of
nonlinear composite dielectrics. II. Periodic microgeometry. Proc. R. Soc. Lond. A 447, 385—
396.

Willis, J. R. 1983 The overall elastic response of composite materials. J. Appl. Mech. 50, 1202—
1209.

Willis, J. R. 1991 On methods for bounding the overall properties of nonlinear composites. J.
Mech. Phys. Solids 39, 73-86.

Zbib, H. M. & Aifantis, E. C. 1992, On the gradient dependent theory of plasticity and shear
banding. Acta Mech. 92, 209-225.

Received 26 October 199/4; accepted 8 May 1995

Proc. R. Soc. Lond. A (1995)



