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ABSTRACT

A finite strain continuum theory is presented for unidirectional fibre reinforced composites under in-plane
loading. The constitutive response is expressed in terms of couple stress theory, and is deduced from a unit
cell of a linear elastic Timoshenko beam embedded in a non-linear elastic—plastic matrix. The continuum
theory is implemented within a finite element framework and is used to analyse compressive failure of
polymer matrix composites by fibre microbuckling. It is assumed that microbuckling initiates from an
imperfection in the form of a finite elliptical region of fibre waviness. The calculations show that the
compressive strength decreases with increasing imperfection spatial size from the elastic bifurcation value of
Rosen (1965, Fibre Composite Materials, pp. 37-75, American Society Metals Seminar) to the imperfection-
sensitive infinite band strength given by Fleck et al. [1995, J. Appl. Mech. 62, 329-337.].

1. INTRODUCTION

Compressive failure is a design limiting feature of long fibre-polymer matrix com-
posites since their compressive strength is about 60% of their tensile strength. Rosen
(1965) predicted the compressive strength of fibre composites by assuming that mic-
robuckling is an elastic bifurcation ; these calculations over-estimate the strength by
a factor of about four. Subsequently, Argon (1972) and Budiansky and Fleck (1993)
have shown that microbuckling is governed by the plastic deformation of the matrix
and by the degree of initial fibre misalignment : the composite fails by imperfection-
sensitive plastic buckling.

To date most analyses of localisation in solids, including plastic microbuckling, are
one-dimensional calculations based on the response of an infinite band as outlined by
Rice (1976). For example, Hutchinson and Tvergaard (1981) have performed an
infinite shear band analysis to estimate the plane strain ductility of metallic alloys;
they found that the ductility is sensitive to the magnitude of imperfections (in the
form of a lower yield strength within the infinite band) and that elastic and plastic
bifurcation calculations grossly overestimate the strain to failure (and the associated
strength). Budiansky (1983) and Budiansky and Fleck (1993) came to the same
conclusions for plastic microbuckling of fibre composites : imperfections are needed
in the analysis in order to predict realistic compressive strengths. There are a number
of sources of imperfection, including fibre waviness, and voids and cracks within the
matrix.

1887



1888 N. A. FLECK and J. Y. SHU
The infinite band analyses described above suffer from two main limitations:

(i) they are unable to predict the width of the microbuckle band, as the constitutive
law contains no length scale ; and

(ii) they assume that the initial imperfection exists as an infinite band rather than as
a finite region. Fleck et al. (1995) overcame the first limitation by performing an
infinite band analyses using a constitutive law which involved the fibre diameter as
the pertinent length scale. They assumed that the fibres possess a finite bending
resistance (which depends upon the fibre diameter) and used couple stress theory to
predict the broadening of the microbuckle band from an initial infinite band of fibre
misalignment. The final width of the microbuckle band is set by fibre fracture: it was
assumed that the fibres break when the maximum tensile bending strain in the fibres
equals the tensile failure strain of the fibres. Fleck et al. (1995) predict that the final
width of the microbuckle band is 10-20 fibre diameters, and that the width is relatively
insensitive to both the constitutive properties of the composite, and the initial width
and magnitude of fibre misalignment. In contrast, the compressive strength was found
to be sensitive to the fibre misalignment angle and moderately sensitive to the width
of the initial band of misaligned fibres.

Recently, a related finite element analysis has been performed by Kyriakides et al.
(1995) to study the early stages of microbuckling. They treated the fibres and matrix
as discrete but perfectly-bonded layers. This approach is useful when the initial region
of fibre waviness extends over only a small number of fibres, but becomes prohibitively
expensive in computer time when a large number of fibres are considered. In the
current work we follow the approach of Fleck et al. (1995) and “smear-out” the effect
of the individual fibres by modelling the composite as a Cosserat continuum capable
of bearing couple stresses. In a finite element realisation of the Cosserat couple stress
theory, each element represents a domain of the composite which may contain many
embedded fibres.

Scope of the paper

In the current work both of the above limitations to an infinite band analysis are
addressed : we develop a constitutive law with fibre diameter as length scale, and we
examine the initiation and early growth of a microbuckle from an elliptical region
of initial fibre waviness. The fibre composite is treated as a smeared-out Cosserat
continuum, with a bending resistance set by the fibre diameter d. In order to obtain
the constitutive law, the fibres are assumed to behave as elastic Timoshenko beams
embedded within a non-linear dilitant plastic matrix. A virtual work expression is
obtained for a two-dimensional unit cell consisting of a fibre of volume fraction ¢
adhered to a matrix of volume fraction (1 —c). Macroscopic stress and strain quan-
tities are thereby derived for the smeared-out homogeneous composite. It is found
that the governing equations are identical to those of Cosserat couple stress theory
(Cosserat and Cosserat, 1909). The significance of the unit cell analysis is that the
independent micro rotation angle 0 in the general couple stress theory is shown to be
the independent rotation angle 0; of the fibre cross-section. A constitutive law for the
composite is proposed wherein the bending resistance of the fibres is set by the fibre
diameter d.
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The governing field equations and constitutive law for the fibre composite is
implemented via a finite element code, using 6-noded triangular elements with three
degrees of freedom at each node (two displacements and one rotation). The finite
element procedure is based upon a Lagrangian formulation of the general finite
deformation of the composite, and can deal with both geometrical and material non-
linearities. A version of the modified Riks algorithm (Crisfield, 1991) is adopted to
handle snap-back behaviour associated with the microbuckling response. Imper-
fections in the form of fibre waviness are included in the formulation.

The finite element code is used in the first instance to determine the effect of a finite
region of initial waviness upon the compressive strength of the composite. The initial
stages of propagation of a finite microbuckle band are also addressed.

2. TWO-DIMENSIONAL COSSERAT THEORY FOR A FIBROUS SOLID

In a classical continuum theory an arbitrary surface element of the material is able
to bear force tractions but cannot support torque tractions. For the case of fibre
composites it is plausible that the fibres carry a substantial bending moment when the
curvature imposed on the material is large. Under these circumstances, a “smeared-
out” material element is capable of supporting a local bending moment per unit area,
known as a couple stress. Fleck et al. (1995) conducted a one-dimensional infinite
band analysis of microbuckling using couple stress theory. They assumed that the
fibre rotation is equal to the material rotation, and so their analysis fits within the
framework of reduced Cosserat theory. Here, we shall consider a two-dimensional
version of general Cosserat theory, in which the rotation kinematic quantity is inde-
pendent of the material rotation.

The governing kinematic, equilibrium and virtual work relations are now derived
for the in-plane deformation of a unidirectional fibre composite ; the formulation fits
within the framework of general Cosserat theory, which is summarised for the full
three-dimensional case in Appendix A. A Lagrangian formulation is employed to
describe the deformed configuration in terms of the initial reference configuration.

2.1. Kinematics

We treat a long fibre—matrix composite as a ““smeared-out” homogeneous aniso-
tropic solid with effective properties to be derived in Section 4 below. Cartesian base
vectors (e, e,) are introduced within the plane of deformation, and are oriented such
that the e;-direction is taken to be parallel to the fibre direction of the fully aligned
unidirectional composite in the initial configuration. The unit normal to the plane of
deformation is given by the Cartesian base vector e; = e; X e,. A material point is
identified by the position vector x in the initial undeformed configuration, and under-
goes a finite in-plane displacement u to a position X in the current, deformed con-
figuration as shown in Fig. 1. The vectors x, u and X may be expressed in terms of
their Cartesian co-ordinates x;, ; and X; as

X=X€;, U=1Uue; and X = X[ei (2.1)
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Undeformed Deformed

0 &

Fig. 1. Definition of co-ordinates and base vectors.

respectively. Here and elsewhere a repeated suffix denotes summation over 1 and 2
unless stated otherwise. We assume that the fibres have an initial misalignment in the
form of a rotation ¢(x) about the e;-axis, and upon deformation the fibres rotate
through an additional angle ¢(x) about the e;-axis to a total misalignment of
¢, = ¢+ ¢. It is convenient to introduce an orthogonal curvilinear co-ordinate system
(&, &,) in the deformed configuration, and to align the £,-direction with the deformed
fibre direction (see Fig. 1). The physical distance along the &,-direction is denoted by
s; and the physical distance along the &,-direction is denoted by s,. The curvilinear
co-ordinate system (&, £,) is fully specified upon selecting arbitrarily a fibre as the
base curve &, = 0 along which &, = s,, and an orthogonal base curve &, = 0 along
which &, = s,. In our development, tensors such as stress and strain will be expressed
in terms of their physical components with respect to the co-ordinate system (£, &,) ;
spatial gradients in the deformed configuration will also be expressed in terms of s,
and s,. With ¢, defined as the angle between the £,-axis and the X;-axis, the unit base
vectors (g, &) of the curvilinear co-ordinate system are related to the Cartesian base
vectors e; by

&, =cospe, +singe, and g, = —sin¢p.e, +cosp.e,. 2.2)

The displacement u and the velocity v of a material point may be expressed in terms
of the base vectors e; and &, as

u=X—x=ue;, = Usgs; (2.3a)
and

V= fl = X = l),-e,- = V,-f:,- (2.3b)

where the ascent dot denotes the material time derivative. The virtual displacement
ou may be expressed in similar manner as

ou = 06X = due; = 0Us,. (2.3¢)
Note that U,, V;and 6U, are deﬁned as the physical components of the displacement,
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velocity and virtual displacement, respectively, in terms of the orthonormal base
vectors (g, &,). In two-dimensional Cosserat theory a rotation @ is introduced as an
independent kinematic quantity of the form

0 = fe,. (2.42)

In Section 3 below we shall identify @ with the rotation of the fibre cross-section. In
like manner, the virtual rotation 66 is written as

80 = 50e;. (2.4b)

The velocity gradient D = Vv in the deformed configuration can be expressed in
the curvilinear co-ordinate system as

. 0

Here, the components D,; are expressed in terms of the physical distances s; as

ov, 09, v, + 0¢.

Dll = asl _VZa—sl7 D12 a s Vl asl
oV, o, v, oo (2.55)

2 t

DZl_az_V262 D22 az Vlasz

(We note in passing that the fibre rotation rate ¢, = ¢ is given by ¢, = D,,.)
In analogous fashion, the spatial gradient of the virtual displacement is

88U, o, 20U, 00,
Win =737 —0U5 Wo="0=+0Ui50 06

28U, ¢, 39U, ¢, '
War = 05, —oU; 08, War = 05, +oU, 05,

2.2. Equilibrium

Consider a homogeneous Cosserat medium subjected to a distribution of Cauchy
stress ¢ and a couple stress per unit area m. We limit attention to the two-dimensional
case and again we take as axes the orthogonal curvilinear co-ordinate system (¢, &,),
as shown in Figs 1 and 2. The third co-ordinate &; is taken to be orthogonal to the
&,- and &,-directions, and forms a right-handed triad with the £, and &, co-ordinates.
Since in-plane deformations are considered we can take &; = X5 = x;.

Force equilibrium gives

Vie=0 2.7)

or, in terms of physical components,
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Fig. 2. Two-dimensional stress state at a material point in a Cosserat medium.

0o, 8
Gt o) 3 "’ (01— 0m) S =0 (2.83)
5S1 a AY) §2
and
oo 0 oo
T o) g+ S o) G =0 (2.80)

We specialise the theory to the case of unidirectional fibre composites, and assume
that the bending moment per unit area in the fibre direction m, is finite, while
the bending moment in the transverse direction m, vanishes (see Fig. 2). Moment
equilibrium within the body implies

om 0
031 —012 =73:5‘T1+m15%' (2.9)
On the surface of the deformed body, we have
niO',-j = ]-‘j’ and nlml = Q (210)

where n is the unit normal, T is the surface force traction per unit area and Q = Qe;
is the surface moment traction per unit area.

2.3. Principle of virtual work

Consider a two-dimensional problem of a Cosserat solid in a planar domain Q with
boundary surface S. The principle of virtual work (with m, = 0) states
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Q S
where the virtual strain dy = dy,¢g; is defined by
5'}),-1- = I’I/ﬁ +8ij50 (2.12)
and the component dk, of the virtual curvature is
060
Here, ¢;;is the two-dimensional permutation symbol and is defined by ¢;, = 1,¢,, = —1

and ¢; = 0 otherwise.
For the limiting case of a conventional non-Cosserat solid, couple stresses vanish
and 60 satisfies

59=%(W12_W21). (2.14)
Then, dy reduces to the virtual increment of the Eulerian strain JE,

and the principle of virtual work attains the familiar form

Q S

3. UNIT CELL ANALYSIS

At the macroscopic scale, we assume the fibre composite behaves as a ‘“‘smeared-
out” homogeneous solid. In order to derive the governing kinematic, equilibrium and
constitutive relations for the “smeared-out” fibre composite, we consider the response
of a unit cell micro-medium surrounding a macroscopic point (¢;, &,) in the “smeared-
out” composite, as shown in Fig. 3(a). First, we give the geometry and some notation
for micro-medium. The unit cell is of physical height ds, and the top and bottom
faces are bounded by two &, contours. Similarly, the unit cell is of physical length ds,
and the ends are bounded by two &, contours. At the microscopic scale of ds; and
ds,, the unit cell contains fibre material of volume fraction ¢ and height A; = cds,,
and matrix material of volume fraction (1 —c¢) and height A, =(1 —c) ds,, as shown
in Fig. 3(b). The actual fibre diameter d enters the formulation at the constitutive
level in Section 4 below. We use a subscript f or a superscript f to denote the fibres
and a subscript m or a superscript m to denote the matrix. Both the fibre material
and the matrix material are assumed to behave as classical non-Cosserat media: on
the length scale of the micro-medium they do. not support couple stress.

Following the strategy of Mindlin (1964), we use micro curvilinear co-ordinates
(11, 1) to define a microscopic material point within the unit cell. The co-ordinates
(n, n,) are centred at any macroscopic point of interest (£, £,) and are locally parallel
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orthogonat

to fibres
g, 4
fibre

(a)

(b)

Fig. 3. (2) A unit cell micro medium in the “smeared-out” composite drawn in the deformed configuration ;
(b) the composition of the unit cell and the local micro co-ordinates.

to the (¢,, &) co-ordinates as shown in Fig. 3(b). Physical distance along the #;-
direction is designated ¢,, and physical distance along the #,-direction is designated
t,. We shall assume that the microstructure does not vary along the #,-direction, and
we thereby take #, = £, and ¢; = s5,. The microstructure does vary along the #,-
direction, and so it is necessary to distinguish between 7, and ¢£,, and between ¢, and
s,. Quantities with a circumflex (*) and with either a subscript f or a superscript f
represent averages over the height of the fibre layer of the unit cell ; similarly, quantities
with a circumflex (*) and with either a subscript m or a superscript m represent
averages over the height of the matrix layer of the unit cell. Quantities with a circumflex
(") but without subscript or superscript labels f or m denote averages over the height
of the whole unit cell.

Now consider the deformation state within the unit cell of physical dimension ds,
by ds,. The fibre material is represented by a Timoshenko beam and deforms in both
axial extension and in bending ; the beam also suffers a uniform in-plane sliding shear
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Fig. 4. (a) Stress state within the unit cell; (b) the work-equivalent stresses and couple stress of the unit
cell; (c) the unit cell in the deformed configuration subjected to a virtual displacement field du and an
independent virtual rotation field 66;.

strain in the #,-direction, and is inextensible in the transverse ¢,-direction. The stress
state within the Timoshenko beam of the fibre material is sketched in Fig. 4(a). The
top and bottom faces of the beam are subjected to equal shear tractions ¢,, and to
equal normal tractions a,,. A direct stress component o', varies linearly with depth
t, and gives rise to a bending moment and an axial force at the ends of the beam.
Similarly, the transverse shear force on the beam cross-section is the resultant of the
shear stress o, which varies quadratically with depth ¢,.

The matrix material within the unit cell also deforms as a Timoshenko beam.
Additionally, the matrix undergoes uniform transverse straining. Since the matrix is
much more compliant than the fibres, we neglect the axial stress ¢¥; within the matrix
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and assume the matrix is subjected to a uniform transverse normal stress o, and to a
uniform shear stress 675, = o,; as shown in Fig. 4(a).

To proceed, we develop kinematic and virtual work relations for the fibre material
and the matrix material within the unit cell. A virtual work statement for the unit cell
enables us to relate the stress state within the unit cell to a macroscopic Cosserat
framework.

Virtual work for fibre material in the unit cell. The fibre material is assumed to
behave as a Timoshenko beam subjected to bending, longitudinal stretching and
transverse shear, but without transverse stretching. The beam is aligned with the #,
co-ordinate, and is inclined at an angle ¢, to the x,-direction. Since the fibres are
parallel sided in the undeformed configuration and suffer vanishing transverse strain,
we have 0¢,/0t, = 0. For the Timoshenko beam, the pointwise virtual displacements
are taken as

SU (1,1m2) = 86U (&1, &) — (1 —%hf)éef@l, 2)s
oU,(n,m2) = 5(72f(51,éz) (3.1

where the angle 0; is the rotation of the fibre cross-section from the initial, stress-free
configuration. In compliance with Timoshenko beam theory, 6;is in general different
from the rotation of the neutral axis of the beam. At a typical microscopic point in
the fibre material, the pointwise virtual Eulerian strain JE follows from relations (2.6)
and (2.15) expressed in the micro co-ordinates (1, 71,), giving

_ 06U 5 0 1, | 096;
0E ———5S1 5U2fas1 (22 —3h) 35, (3.2a)
1 (06U, d¢,
OE,, = 2( 35, —00:+0U, 3, ) (3.2b)
and
The internal virtual work éw; of the fibre material over a volume ds, A, is
dsl hf
owg = J f [6510E,, +0,,0E,, +201,0E,,]1d¢, dt,
0 0
06U ~ 00 060
— af L Y% £ f
B C{G“( 0s, U 6s,)+ml 0s,
doU. ~ 0
+60, = +5U,fﬂ —36; | pds; ds, (3.3a)
0s, 0s,

where
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1 [*

é) =h— o, dey,
fJo

Af 1 [ £

012 =7 o1, dt,,
fJo

£ 1 [ f

M=o (8, —hs/2)0, dty (3.3b)

fJo

are the average stresses and couple stress taken over the height of the fibre [see Fig.
4(b)]. In the integration of the term 2¢%,5E,, in (3.3a) the pointwise virtual dis-
placement U, appearing in 6E,, is replaced by §U,.. This can be justified as a first
order approximation valid for an infinitesimal unit cell. It is clear from (3.3a) that the
average stress measures ¢! |, m' and 67, are work-equivalent to the stress distributions
o}, and ¢%,. Equation (3.3a) can be simplified further to

06U A6 . 000 06U 0
ow; = c{a”( L_§0 ¢t +m f+6f12 ——2 460, = o —00; | pds, ds,.
51 a al aSl a]

(3.4)

In the reduction of (3.3a) to (3.4) we use the following first order approximations
for the pointwise virtual displacement dU, and the fibre misalignment angle ¢, at the
microscopic level within the fibre

. .. |esU, 88U, |80, ,
|[0U,—0oU,| « |0U}], ' 35, os, 25, fori=1,2 (3.5a)
and
. |9 0g| |0 |
[ — & < [@il, Ias1 =25 | < as, | (3.5b)

Relations (3.5a) and (3.5b) are justified by taking the unit cell to be sufficiently small.
Upon replacing the average virtual displacements within the fibre by the average
virtual displacements of the whole unit cell, one arrives at (3.4). A similar first order
approximation will be applied for the matrix material of the unit cell as follows.

Virtual work for matrix material in the unit cell. It is assumed that the matrix in the
unit cell is subjected to transverse normal stress and sliding shear stress as shown in
Fig. 4(b). We neglect the longitudinal component of stress in the matrix on the basis
that the Young’s modulus of the fibres is much greater than that of the matrix. The
pointwise virtual displacements of a microscopic point within the matrix are taken as

OU (11,12) = 86U (&1, E2)— (8 _hf_éhm)éem(éla ¢2),

R 06U, (n,,
oU,(ny,m2) = 6U2m(éla€2)+(t2—hf_%hm)—zé(;h—n2) (3.6)

2
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where 0, is the rotation of the cross-section of the matrix layer. We shall assume that
00U, (n,,n,)/0t, is independent of the micro co-ordinate 7, within the matrix micro-
volume. Then, since the fibre in the unit cell is assumed to be transversely inextensible
we may write

00U, 1 00U,
atz —l—C 5.5‘2 '

(3.7a)

Similarly, because the inclination ¢, of the fibre is taken to be independent of ¢, within
the fibre microvolume, the gradient of ¢, within the matrix is related to the average
value within the whole unit cell by

=2 (3.7b)

By making use of (2.6) and (2.15) in the micro co-ordinates (7, #,), the pointwise
virtual Eulerian strain within the matrix is

30U, ¢ 960,
OBy, = 5. B —0Us 3= = (t = h—3hn) 5%, (3.82)
_1 65U2 a¢t a¢t
5E12 - 2( 6Sl +5U1 as1 —60 6U2 a 2 9 (3-8b)
06U, ¢,
OE,, = ra +6U, — e (3.8¢)

The virtual Eulerian strain of the matrix can be written in terms of the average
displacements of the whole unit cell upon making use of (3.7a) and (3.7b), and the
first order approximations (3.5) ; the resulting simplified form is

06U 059
OE,, ~ —— —6U,— 99, —(t—he—3h (3.9a)
5S1 0s S
1/06U, ¢, 1 aqst
SE,, ~2( o5, +6U, 3, —00,,— 06U, —— v ) (3.9b)
A 1 04,
OEn ~ T e +6U, — e ds, (3.9¢)

Note that 6E,, and éE,, are independent of the local physical distance #,. The internal
virtual work for the matrix portion of the unit cell dw,, is obtained by substituting
relations (3.9b)—(3.9¢) into (2.16) and by neglecting the contribution of ¢,,. This gives

ds (“het+hg,
5Wm = J‘ J‘ (0'225E22+20'T25E12) dtz dtl
0 Ju

06U 0 0
~ {0'22( 6s22 +6U, aqbt) 64,00, ad);
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00U, . 0,

+(1_C)021<—5? +5U16—S:—59m)}dsldsz. (3.10)

Virtual work for the smeared-out homogeneous composite. The internal virtual work
over a volume ds, ds, of the unit cell of the composite is obtained by adding (3.4) and
(3.10). Upon making use of the following averaging relations

c80;+ (1 —¢)86,, = 66 = — agszjl , (3.11)
2
cal, +(1—0)oy; = 645, (3.12)
and
6l =6y, cml =m,, (3.13)

the internal work is

ow = {6, Wi +02, W, +612(W12_69f)+621(W21 +00;) +m, 0k, }ds, ds,
(3.14)

where W, is defined by (2.6) and the virtual curvature Jx, is defined by (2.13). Each
of the quantities in relation (3.14) are functions of macro co-ordinates (£, &,). Now
consider the composite to be “smeared-out” and reinterpret (3.14) as the internal
virtual work over a micro-volume of ds,ds, of the “smeared-out” homogeneous
composite. This homogeneous composite is subjected to a stress state of ;, = 64,
02, 012 = 614, 05 and couple stress m,, and undergoes a displacement U, = U, and an
independent rotation 6 = 0;. We integrate the virtual work relation (3.14) over the
total volume Q of the composite and use the divergence theorem to derive the principle
of virtual work for the “‘smeared-out” composite :

J {011 Wii+0:, Wi +01,(Wi,—060) + 05 (W), +59f)+m15’<1} dQ
o)
s

provided that the stresses and the couple stress satisfy the equilibrium equations (2.8)—
(2.10). Here, T;1is the force traction and Q is the torque traction acting on the surface
S of the domain Q. It can be seen that (3.15) is identical to the principle of virtual
work for a general Cosserat solid, as given by (2.11). Henceforth, we shall treat the
composite as an equivalent Cosserat solid. The above unit cell analysis enables us to
identify the rotation angle of the fibre cross-sectional area 6; with the independent
micro rotation angle 0 in the Cosserat theory. It also provides a guideline for stipulation
of the constitutive law for the composite in Section 4.
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3.1. Rate form of principle of virtual work

We require a rate form of the principle of virtual work for two reasons:

(i) the equilibrium path is strongly unstable with a snap-back behaviour at the
maximum load. In order to calculate the equilibrium path a modified Rik’s algorithm
(Crisfield, 1991) is used: this requires calculation of the current tangent stiffness
matrix ;

(ii) the flow-theory constitutive law for the composite is given in incremental form in
Section 4 below.

In order to obtain the virtual work statement in rate form we rewrite the principle
of virtual work in terms of the undeformed, reference configuration as

J J{o,;(W;+¢;00)) +m oK, } dQ, = J (t;0u;+ qd0;) dS, (3.16)
Q

So

where the subscript 0 indicates the undeformed configuration. The Jacobian of defor-
mation J is J = dQ/dQ,, and the nominal traction ¢ and nominal moment g are
defined by

Note that the internal virtual work expression is phrased in terms of physical com-
ponents in the deformed curvi-linear co-ordinate system, and the external virtual
work is written in terms of Cartesian co-ordinates in the undeformed configuration.

To derive the rate form of the principle of virtual work, we take the material time
derivative D/Dt of (3.16), giving

J' J{(O.'ij+0’ijj/J)(mj'+8ﬁ56f) +O-ij(Dle/Dt+8ji59f)+ (m1 +m1j/J)(SK1
Qo

+m, Déx,/Dt} dQ, = J (i,0u;+ 1,01+ ¢60;+ ¢80;) dS,.  (3.18)

So

The above relation is re-phrased in a more convenient form as follows. First note
that J/J = D,. Next, denote the spatial gradient in the deformed configuration of the
velocity increment év by C = Vv = C;¢:¢;. We can express the material time deriva-
tive of W;in the form :

DW, .
Di L= Cy— Wyt + Wijer) b — Du Wy, (3.19)

by the following argument. The tensor

DW D .
S =p,(Vow =C-D-W (3.20)

can be rewritten in terms of the curvilinear base vectors (g,, &,) as
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DW
E =(Cij—Dik ij)eisj. (3.21)

Alternatively, DW/Dt¢ can be written as

Dw; . s
D = E( W ee) = p; &t Wi(eié;+ &) (3.22)

or, upon making use of & = ¢, as

DW DWW, .
—'l; = D[ ] 8,‘8]' + (I/I/ikekj + ij£ki)¢t8i8j' (3.23)
Now equate (3.21) and (3.23) to get (3.19).
The material time derivative of the curvature increment is written as

Dok,
Dt

= 5K1 _.D115K1 (3.24)

where the curvature rate and virtual curvature rate are defined by

00; 066,

K, ———a—Sl, K1 =5§. (325)
Finally, we make use of the principle of virtual work (3.15), but written in the form
j J{o,(Cy+€;:00;) +m, 0k, } dQ, = J (1;60;+ q50;) dS, (3.26)
Q, So

and substitute relations (3.19), (3.24) and (3.26) into (3.18) in order to obtain a
convenient rate form of virtual work :

J J{(6,+ 0Dy + o-kjgki(ibt +0 ikgkjd)t — 01 D) Wi+ (65 + 0;Djy. ) €500,
Q

+ (m1 +m1D22)5K1} dQO - J‘ (tj(suj+q66f) dSO. (3.27)
So

4. CONSTITUTIVE LAW

We shall present the constitutive law in terms of physical components of stress
and strain in the deformed curvi-linear reference frame. The constitutive law of the
composite is based on the plasticity law given by Slaughter et al. (1993) and by Fleck
et al. (1995). The bending resistance of the composite is calculated by neglecting the
matrix contribution to couple stresses. Simple beam theory for circular fibres of
diameter d, axial modulus E; and volume fraction ¢ gives the relation between the
couple stress m, in the composite and the associated curvature k; ; in rate form this
appears as
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cE:d?
ml = 1f6 K.:l' (4.1)

The “smeared-out” composite is ascribed a longitudinal Young’s modulus E; = cE,
and deformation in the fibre direction is taken to be elastic such that

611 = ELDy;. (4-2)

In order to estimate the sliding and transverse shear responses we refer to the unit
cell construction of Fig. 4(c). The transverse shear stress rate ¢, of the composite is
related to the velocity gradient and rotation rate of the fibre cross-section by

Gy = Cd'f12+(1—c)d'21s 5'52 = Gf(Dlz*Gf) 4.3)

where it is assumed that the sliding shear stress rate ¢, is exerted on both the matrix
and the fibres. G; is the shear modulus of the fibres. The sliding shear strain rate j,
and the transverse strain rate é; of the composite are given by

))s =D12+D21 (4°4)
and
éT = Dzz. (4.5)

The combined sliding shear and transverse response of the composite is taken to
be that of an elastic—plastic flow theory solid, which parallels the deformation theory
description of Budiansky and Fleck (1993, 1994). They propose an effective shear

stress 7, defined by
2
o
.= [0} + ﬁ (4.6)

where the constant R is interpreted as the ratio of yield strength in transverse tension
to that in shear. The sliding shear strain rate j, is decomposed into an elastic part
6,,/G and a plastic part y? ; similarly the transverse strain rate é; can be decomposed
into an elastic part ¢,,/Et and a plastic part . We assume that the plastic strain rate
vector (2, é%) is normal to the yield surface in the (o4, g;;) space, giving

Y2 = Y. 01./00,,, and & =y, 01./00,, 4.7)

where the effective strain rate 7y, is defined by the work equivalent statement

TeJe = 02175 +02,8% (4.3)
and is related to (y2, &%) by
Te = o/ (70)* + R*(¢8). 4.9)

It remains to state a strain hardening law to link 7, and y.. The functional depen-
dence of y, upon 7. is assumed to equal that of y? on 7 for the composite in pure shear,
so that
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1 1
Ye = [G (T ) __E:ITe (410)

where G,(7) denotes the secant shear modulus of the shear stress t versus total shear
strain y curve. G is the elastic shear modulus of the composite. In rate form, (4.10)
becomes

Je = Te/H () (4.11)

where the hardening modulus H is related to G, by

Ezas——G—szE—E. 4.12)
A Ramberg—Osgood description is used for the strain hardening response
£=&+a(ﬁ>, W (4.13)
v Ty Ty Py

where o is given the value 3/7 and (ty, yy, #) are material constants for the composite.
Then, the hardening modulus H is

a n—1
H=&=§(T—Y> ift, >0 (4.14)

and H = oo if %, < 0. Inversion of the above stress—strain relations for combined
sliding shear and transverse loading gives

. G? 0'%2. G? 0210722
Gy, = | Ex— T

G+H 2 )7 G+H < %
(4.15)
G 021023 G? 0%2
on=—GlgH = T+ G—G+H 2 Vs

Finally, we specialise the constitutive description by setting E; = R*G; conse-
quently, for proportional loading, the elastic—plastic response simplifies to y, = a,,/G,
and & = 0,/ R*G,, as discussed by Slaughter et al. (1993).

Specification of the composite properties. We focus on the compressive strength of
unidirectional carbon fibre reinforced epoxy. Unless otherwise stated we shall assume
a uniform volume fraction ¢ = 0.6, and take E/t, = 2500. The shear modulus of
the fibres is taken to be Gy/t, = 400 and the shear modulus of the composite is
G/, = 1]y, = 100. The transverse modulus of the composite is Er/t, = 250, giving
R? = E;/G = 2.5. The strain hardening index # is taken to lie in the range 3-19.
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5. APPLICATION OF CONSTITUTIVE FRAMEWORK TO FIBRE
MICROBUCKLING

A finite strain Lagrangian-based finite element code has been developed from the
couple stress formulation of the previous sections. The details of the finite element
implementation are presented in Appendix B. As a check on the formulation and
programming of the finite element code, we consider first the simplified geometry of
an infinite band of misalignment and compare the results with those given previously
by Fleck et al. (1995). Next, we examine the initiation of microbuckling from an
elliptical region of initial fibre misalignment.

5.1. Microbuckling from an infinite band of fibre waviness

Consider a unidirectional composite plate subjected to remote compressive stress
o® parallel to the fibre direction. It is assumed that the plate contains a band of fibre
waviness, of infinite length and finite width w, as shown in Fig. 5. We align the x; co-
ordinate with the remote fibre direction, and the x, co-ordinate with the transverse
direction. The normal n to the band is rotated an angle f about the x;-axis ; then, the
initial fibre misalignment is perfectly correlated along the direction dx,/dx, = —tan f.
Fleck et al. (1995) have used a simplified form of couple stress theory to determine
the effect on the compressive strength of the magnitude and wavelength of fibre
misalignment within the infinite band. They restricted attention to the early stages of
microbuckling where fibre rotations and strains remain small. This problem is revisited
using our finite element code which can deal with finite deformation, and the effects
of fibre extensibility and longitudinal shear.

Compressive failure is perceived to occur by the initiation and growth of a mic-
robuckle from a finite imperfection in the form of fibre waviness, a void or a resin-
rich region. It is reasonable to assume that an infinite band analysis is representative
of the collapse response when the initial imperfection spans many fibre diameters in
the transverse direction. In the current paper we shall explore the validity of the
infinite band assumption.

e )

N\ S—

Fibres

Fig. 5. Geometry of an infinitely long microbuckle band.
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Fibre and loading directions

Xa iss&smm:sssgﬁ

0 *

Fig. 6. The mesh for analysing the infinitely long microbuckle band of f = 0°; the mesh has 120 elements
and 363 nodes.

Followin_g Fleck et al. (1995) we adopt a cosine variation of initial fibre mis-
alignment ¢ with co-ordinate x| measured along the normal n to the band,

/

d3=gbocos%l-, X} = x, cos B+ x, sin f. (5.1)

Throughout the current paper we assume, arbitrarily, that the initial band width is
w = 20d, where d is the fibre diameter. [Fleck ez al. (1995) show that the compressive
strength is relatively insensitive to the chosen value for w/d.] A typical finite element
mesh is shown in Fig. 6. The mesh is aligned with the remote fibre direction and
consists of six-node triangular elements (see Appendix B) ; it is of length 2004 and of
width 0.54. We exploit the rotational symmetry of the geometry and loading by
extending the mesh over only half of the plane : the mesh is drawn from the centre of
the band to a remote boundary. Vanishing displacement is prescribed at the left-hand
end of the mesh and a uniform displacement u{° is applied at the right-hand end of
the mesh. The torque traction vanishes at both ends. Periodic boundary conditions
are applied to the sides of the mesh in order to reproduce the infinite band response.
The calculation gives the remote stress ¢* which varies by less than 0.1% across the
height of the mesh. A typical curve of the average value of ¢ versus the end
displacement u{° is shown in Fig. 7(a), for the case @o/y, = 4 (¢ = 2.3°), f = 0° and

30 i T T T T
| B
20 -
o® C
Ty ot D
10 -
A .
- | ! | - 1
0 1 2 3

uy/d

Fig. 7(a). A typical load versus end shortening displacement curve showing a snap-back response. @o/y, = 4,
p=0°and n=3.
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Fig. 7(b) The profile of fibre rotation angle along the fibre direction during the course of the loading history
for an infinite microbuckle band. The labels A, B, C and D refer to the four stages of deformation given
in Fig. 7(a).

n = 3.1 The calculated compressive strength o, is within 1% of the values given in
Fleck et al. (1993). Figure 7(a) displays a snap-back behaviour whereby the post-
maximum load state is unstable under either a fixed remote load or a fixed remote
displacement ; the extent of the snap-back depends upon the length of the plate, as
discussed by Kyriakides et al. (1995). The profile of total fibre rotation ¢, is plotted
in Fig. 7(b) as a function of the x, co-ordinate (parallel to the remote fibre direction),
at the four stages of loading history marked on Fig. 7(a). We note from Fig. 7(b) that
the maximum load (labelled B) is associated with a small fibre rotation ¢ = 3° at the
centre of the microbuckle band (x; = 0). At loads beyond the maximum load fibres
within the band continue to rotate and the band of rotated fibres broadens.

The compressive strength is found to be relatively insensitive to the axial and shear
moduli of the composite by the following parametric study. When the ratio E; /7, is
increased from 10° to 5 x 10%, corresponding to an increase in E;/E; ratio from 4 to
20, the compressive strength increases by about 10%. Similarly, the compressive
strength increases by less than 2% when G/, is increased from 200 to 800. (Other
moduli are held fixed at the values specified at the end of Section 4 and n = 3.)

5.2. Microbuckling from an elliptical region of fibre waviness

Next, we study the effect of a finite region of initial fibre misalignment upon the
collapse response of the composite. Again, a uniform remote compressive stress ¢* is
applied in the x,-direction, as shown in Fig. 8(a). Consider the case where the initial
fibre misalignment is confined to an ellipse of length / and width w in the (x,, x,)
plane, as shown in Fig. 8(a). The axes of the ellipse (x, x3) are rotated through an

T These values were chosen to be representative for carbon fibre—epoxy matrix composites as discussed
by Budiansky and Fleck (1993); the compressive strength is a minimum for § = 0° and is only mildly
sensitive to the magnitude of § (see Fleck et al., 1995).
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Fig. 8(a). Sketch of the initial imperfection. Fibre misalignment ¢ is confined to an ellipse of length 7 and

width w.
——
free surface ——
———

1500d
fine mesh zone —~—
initial imperfection region -
uy’

T2 —~—
-
-

1500d 20004
g
free surface -~
/ -

Fig. 8(b) Sketch of the geometry and boundary conditions for the case of a finite imperfection.

angle f about the x;-axis with respect to (x,, x,) axes, such that
X7 =x,cosf+x,sinf and x) = —x,sinf+x, cosp. (5.2)

In the region exterior to the ellipse the fibres are straight and perfectly aligned in the
x,-direction. The fibre misalignment follows a cosine distribution within the elliptical
region, as specified by
- T .
5= ¢0cos§p, ifp<l; (53)
0, ifp>1.
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2x1\2 [2x5\*) /2
ps{<w>+(1>} . (5.4

As the band length / - oo, the imperfection tends to an infinite band as described in
the previous section. At the other limit of / — 0, the fibre misalignment vanishes and
the compressive strength ¢, approaches the Rosen value of g, = G, where G is the in-
plane shear modulus of the composite. These limits provide a useful check to our
finite element calculations.

A sketch of the geometry and the boundary conditions is shown in Fig. 8(b) ; we
need to consider only half of the structure due to the rotational symmetry of the
imperfection and of the remote loading. The plate is loaded by a uniform remote
displacement u° and the finite element calculation gives the corresponding remote
stress 6. (For all the cases reported below ¢ varies by less than 0.1% over the end
of the structure.) A typical undeformed mesh is given in Fig. 9(a) and the region of
fine mesh containing the imperfection is shown in Fig. 9(b). The dashed line indicates
the boundary of the initial imperfection region. The full mesh is of length 20004 and
of width 30004.

A typical plot of the average remote stress ¢ versus the end shortening u{° is given
in Fig. 10 for the inclinations B =0° and f=30° (n=3, ¢o/y, =4, w/d= 20,
l/d = 50). The two responses are almost linear with a sharp snap-back behaviour at
maximum load. In order to distinguish between the two responses, the response for
f = 30° has been shifted horizontally in Fig. 10. Since we focus our attention on the

where

Fibre and loading directions

\
\
\

L

Fig. 9(a). Global view of a typical undeformed mesh with 1985 elements and 4066 nodes.
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Fibre and loading directions
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)
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Fig. 9(b). The fine mesh zone of the mesh shown in Fig. 9(a). The dashed line indicates the boundary of

50 T —T T T T T T T B
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B /// 4
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the initial imperfection region.

Fig. 10. Remote stress o versus end displacement u{° response for a finite imperfection of I/d = 50, n =3
and @,/y, = 4. The responses shown for f = 0° and B = 30° are almost indistinguishable except for different

maximum loads. (¢./G = 0.435 for f = 0° and 6./G = 0.478 for § = 30°.)



1910 N.A.FLECK and J. Y. SHU

initiation and early propagation of a microbuckle, the calculation of the post-buckling
response was stopped when the load dropped to about 75% of the maximum load.
The severe snap-back responses of Fig. 10 are due to the fact that the mesh is long in
the fibre direction (2000d). The snap-back is more severe than in the infinite band
case of Fig. 7(a) as the fibres surrounding the finite imperfection remain almost
straight at maximum load.

The progressive nature of the collapse is exhibited by contours of total fibre rotation
¢, which are shown in Fig. 11 for g =0° and in Fig. 12 for f = 30°. For both
geometries contours are displayed for states A, B and C as labelled on Fig. 10. State
A is the initial unloaded configuration with ¢ = 0 and ¢, = ¢ ; state B is immediately
post maximum load (99.7% of maximum load for f = 0° and 99.6% of maximum
load for f = 30°); and state C is at 78% of maximum load for f = 0° and 74%
maximum load for = 30°. We note that state B, at just past maximum load, displays:

(i) arelatively small maximum value of fibre rotation ¢ = ¢,— ¢. The maximum fibre
rotation is ¢ = 4.4° for the case f = 0°, and the maximum fibre rotation is ¢ = 3.9°
for the case f = 30°; ‘

(ii) a spatially small region of fibre rotation. For example, consider the case f = 0°.
At maximum load the region over which the total fibre rotation exceeds 0.5° is only
70d, i.e. 2.3% of the width of the mesh.

We note from Figs 11 and 12 that, regardless of the initial orientation f of the
region of waviness, the microbuckle band tends to propagate in the transverse x,-
direction. Considerable compressive transverse strain of about 4% is attained at state
C. This suggests that the phenomenon of “fibre lock-up’ may need to be considered,
as described by Fleck and Budiansky (1991). However, further work is required in
order to determine whether “fibre lock-up” has a significant effect on determining the
propagation angle f of a microbuckle band.}

The effect upon the collapse strength o, of the initial length / and orientation f of
the imperfection is shown in Figs 13(a) and (b) respectively. Consider first Fig. 13(a).
As the length / increases from zero to infinity, the collapse strength decreases from
the elastic bifurcation strength 6, = G given by Rosen (1965) to the infinite band
result given by Fleck et al. (1995). The collapse strength is mid-way between the
elastic bifurcation value and the infinite band value at a “transition length” //d ~ 20.
For I > 0, the strength decreases with increasing magnitude of initial misalignment
¢, and with increasing strain hardening index n.

An analytical formula for compressive strength has been given by Budiansky and
Fleck (1993) for an infinite band, inclined at an inclination f as

2 2
gGE _ 1+ R*tan’f . 5.5)

n—1

1+n(%>;[(ioiy; 1+ R? tan? /3} i

T The authors have recently included the effects of lock-up in the finite element analysis. Initial results
for a finite circular initial imperfection suggest that the microbuckle initiates at a vanishing angle § and
then grows with an increasing value of . In the early stages of growth the microbuckle is inclined at about
B = 10°, in agreement with the findings of Kyriakides et al. (1995).
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Fig. 11. Contours of total fibre rotation ¢, (in degrees) at the three stages marked A, B and C in Fig. 10
for f = 0°. Remote stresses at stages B and C are respectively 99.7 and 78.2% of the maximum load. The
shape of the deformed fibres at state C is included at the bottom of the figure.

The parameters in (5.5) have already been defined above. Although this formula was
derived using the so-called kinking analysis (neglecting fibre bending) it has been
shown by Fleck et al. (1995) that the strengthening associated with fibre bending is
negligible for w/d < 20. For a typical initial band width of w = 204, it is seen from
Fig. 13(a) that o, exceeds the infinite band strength by less than 20% for a length of
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Fig. 12. Contours of the total fibre rotation ¢, (in degrees) at the three stages marked as A, B and C in
Fig. 10 for § = 30°. Remote stresses at B and C are respectively 99.6 and 73.8% of the maximum load.
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Fig. 13(a). Compressive strength as a function of the length / of the elliptical region of fibre misalignment.
w/d = 20. The infinite band results are taken from Fleck et al. (1995).
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Fig. 13(b). The effect of the orientation f of the elliptical region of waviness on the compressive strength.
n=3,w/d=20and ¢,/y, = 4.

waviness / greater than 400d. For typical carbon fibre—epoxy composites, the fibre
diameter is approximately 5 um : we conclude that the estimate (5.5) from the infinite
band kinking model is adequate provided the region of initial waviness exceeds about
2 mm in length.

The effect of the initial band inclination § upon ¢, depends upon the value of //d,
as shown in Fig. 13(b). Recall that the width w of the elliptical region of waviness has
been set at w/d = 20 throughout. Thus, the imperfection is circular at //d = 20. At
I/d > 20 the ellipse is elongated in the direction which subtends an angle f with the
x,-axis, and o, increases with increasing f. At //d < 20 the ellipse is elongated in the
direction which subtends an angle f with the x;-axis, and ¢, decreases with increasing
B.

Ohno and Hutchinson (1984) have performed an analogous exploratory study of
the effect of a finite imperfection on localisation in metals. They considered localisation
in a circular bar under axisymmetric loading. The initial imperfection was a central
region of reduced strength due to an enhanced void content compared to the remainder
of the voided solid. Their results are qualitatively similar to those presented here: as
the aspect ratio //w of the imperfection increases the ductility goes through a transition
from a high value (corresponding to bifurcation of the solution for a uniformly voided
solid) to a lower value (corresponding to an infinite band solution with enhanced
voiding within the band).

6. CONCLUSIONS

A finite element code based on general Cosserat couple stress theory has been
developed for analysing the plastic microbuckling of a fibre composite from an initial
imperfection in the form of a localised region of fibre waviness. A unit cell analysis
gives the same governing equations as those of Cosserat couple stress theory and
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clarifies the physical meaning of the independent micro-rotation. As the length of the
imperfection is increased from zero to infinite, the compressive strength drops from
the Rosen (1965) value of the in-plane shear modulus of the composite to the infinite
band strength of Fleck er al. (1995). The results show that the compressive strength
is mid-way between the two limits for a circular imperfection of diameter 20d, where
d is the fibre diameter. The infinite band approximation is accurate to within 20%
when the imperfection length exceeds about 4004, i.e. about 2 mm for carbon fibre—
€poXy composites.
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APPENDIX A: REVIEW OF COSSERAT COUPLE STRESS THEORY

The classical theories of continuum mechanics (such as elasticity and plasticity theories)
assume that the transmission of loads on both sides of an infinitesimal surface element d.S
within the material is described completely by a force vector T d.S acting on the surface element.
In the couple stress theory of Cosserat and Cosserat (1909) it is assumed that the surface
element dS may transmit both a force vector T dS and a couple vector QdS. The corollary is
that the deformation field of the body is specified by a material rotation 6 in addition to the
displacement field u. Toupin (1962), Mindlin and Tiersten (1962) and Koiter (1964) have
considered the so-called reduced couple stress theory, wherein @ is identified with the rotation
of the displacement field, 8 = %curlu. Here we shall adopt the framework of general couple
stress theory, as laid down by the Cosserat brothers (Cosserat and Cosserat, 1909).

Consider an arbitrary volume Q of the body in the deformed configuration, bounded by a
piecewise smooth surface S. Equilibrium of forces on the body gives

JTdS=0 (A1)

and equilibrium of moments gives

J[XxT+Q]dS=0 (A.2)

where X is the radius vector from an arbitrary fixed point, and body forces and body couples
have been neglected. Now introduce the Cartesian base vectors e, The components o;; of the
unsymmetric Cauchy stress tensor ¢ denote the components of T; on a plane with a unit normal
n; such that

]’} = l’l,-O'ij. (A.3)

(Throughout this Appendix a repeated suffix denotes summation over 1 to 3.) In similar
manner, the components m;; of the couple stress tensor m denote the components of Q; on a
plane with a unit normal »,, giving

Q; =nmy. (A4)

Application of the divergence theorem to (A.1) and (A.2), using (A.3) and (A.4), leads to
the usual force equilibrium equation

g Jinj = 0 (A'S)
and the moment equilibrium equation
€k O jk +mﬂ"j =0 » (A.6)

where the comma subscript denotes differentiation with respect to a component of the spatial
co-ordinate X. The three-dimensional permutation symbol is designated ¢;.

The principle of virtual work is formulated in terms of virtual displacements éU; and
independent virtual rotations 6®;; only for the special case of reduced Cosserat theory does 6®;
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coincide with the material rotation. Denote the rate at which work is absorbed internally per
unit volume by éw ; then, the equation of virtual work reads

j SwdQ = J [T.6U,+Q0,60,dS (A7)
Q S

where the volume Q is contained within the closed surface S. Using the divergence theorem,
the right-hand side of (A.7) may be re-arranged to the form

J [zéU,_FQ,é@,] dS = J’ [O'J,’jéU,-F(SukO'jk+mﬂ,_,)5®,+0',15’yﬂ+m,15KJ,] dQ (A.8)
N Q

where the increment in “relative strain” is dy; = 60U, ;+¢,;;00,, and the curvature increment is
ok; = 00, ;. Consider the right-hand side of (A.8). The first term vanishes by force equilibrium
(A.5), and the second term vanishes by moment equilibrium (A.6). Thus, the principle of
virtual work follows from (A.8) as

N

Q

APPENDIX B: FINITE ELEMENT IMPLEMENTATION

A Lagrangian formulation is adopted to deal with the finite deformation of the composite.
The mesh is drawn in the initial undeformed configuration and, at each loading step, the
Cartesian components of the displacement increments are calculated ; summation gives the
accumulated displacement. A 6-noded triangular element is adopted, with three degrees of
freedom at each node: (u;, u,, 0;) as shown in Fig. B1. The displacement and velocity fields are
interpolated as

6 6 6
uy =Y Nul, u,=>3 Nuj, 6:=) N6, (B.1)
I=1 I=1 I=1
6 6 . 6
v = Z NIUII, Uy, = Z vaé, Gf = Z NIG{‘ (B.Z)
I=1 I=1 I=1

where the superscript / indicates the respective values at node 1. The shape functions are defined
by

0 X

Fig. B1. The six-noded triangular element and its degrees of freedom.
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N' =M1 —1) for I=1,2,3 (B.3)

and
N*=4)'2?, N°=4)?)%, N¢=4)°}" (B4)

The definition of the triangular area co-ordinates A’ can be found in standard finite element
text books such as Zienkiewicz and Taylor (1989).

The physical components of the velocity and displacement in terms of the orthonormal base
vector (g,, &,) in the deformed configuration follow from (B.1) and (B.2) as

6 6
= Y N'(ujcos¢,+ujsing,), U, =Y N'(—ujsin¢ +ujcos ) (B.5)
=1 =1
and
6 6
= Y N'(vicosp.+vhsing,), V,= Y N'(—0vfsin¢,+0v}cos¢,) (B.6)
=1 =1
where
cos =F“cosq—51—\}—Flzsind_)’ sin¢t=FZICOS$ZFZZ sinq_b. ®.7)

Here, ¢ is the initial fibre misalignment angle, and the Cartesian components of the deformation
gradient tensor F are defined by

0X; Ou;
F,= 7} = 0y 3%, (B.9)
The denominator A of (B.7) is
A = {(F\, cos ¢+ F, sin §)* + (F,, cos ¢+ F,, sin ¢)*} /2. (B.9)

The finite element formulation is used to set up a linear system of equations with the nodal
velocities as the primary unknowns. The tangent stiffness matrix of the system of equations is
determined from the rate form of the principle of virtual work, (3.27) as follows. The stress
rate 6, is expressed in terms of the veloc1ty gradient D;; and the couple stress rate 7, is expressed
in terms of the curvature rate k, via the constitutive equations (4.1)—(4.3) and (4.15). To carry
out the volume integration of the virtual work statement over each element, a seven-point
Gauss—Radau quadrature rule (Zienkiewicz and Taylor, 1989) is adopted. Since 0; has quadratic
variation in x,, the term (¢,, —6,,)06; contains a term 6,00, which is a fourth order polynom1a1
of x,. To integrate such a term exactly, the seven-point Gauss—Radau quadrature is used. (A
selected reduced integration is not needed since the fibre shear stiffness is small.) The above pro-
cedure gives us a system of linear equations for the unknown nodal velocity v and rotation 6;.

In order to calculate the stiffness matrix of the overall system of equations in rate form, the
following equations relating differentiation in the curvilinear co-ordinates (in the deformed
configuration) to differentiation in Cartesian co-ordinates (in the undeformed configuration)
are required :

0 ) 0
a—=(Ff21 cos ¢, —Fi}! Smd’) +(F22 COS¢: —F3'sing) —

5, 0x,

; a ] (B.10)
%, =(F1' cos ¢+ F;' sin ¢,) ax + (F3,! cos ¢+ F5,' sin ¢,) o

where F;! is the ijth Cartesian component of the inverse of F. Since the Cartesian co-ordinate
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in the undeformed configuration Xx; is a linear function of the area co-ordinates A, and vice
versa, the conversion between 0/0x; and 0/04, is straightforward, and is not presented here.

The components of the virtual displacement and velocity gradients in the curvilinear co-
ordinates are calculated via :

dou av
and the virtual curvature dx, and curvature rate k, are calculated via
060 . 00,
5K1 —“é; and K, = aSl . (B12)

To deal with the snap-back effect, we employ a version of the modified Riks algorithm by
Crisfield (1991). The linearised arc-length method is chosen because of its simplicity, and the
sign of the determinant of the current tangent stiffness matrix determines the loading direction
of the next increment. The convergence criterion for the equilibrium iterations is such that the
absolute value of any residual nodal force (the applied nodal forces subtracted by the nodal
forces in balancing with the internal stresses and couple stress) is less than a given tolerance
(which is set to be 10~ 7,d for force and 10~° 7,d> for torque).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

