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Prediction of compressive toughness
for fibre composites

By M. P. F. SUTCLIFFE, N. A. FLECK AnND X. J. XIN

Department of Engineering, University of Cambridge,
Trumpington St., Cambridge CB2 1PZ, UK

The development of microbuckling from a sharp notch under remote compressive
loading is analysed for a long fibre composite. The composite is modelled as alter-
nating layers of elastic fibres and a nonlinear matrix. A finite element analysis is used
to predict microbuckle initiation. The relationship between the compressive mode-I
stress intensity factor K and the microbuckle length ¢ (that is, the compressive R-
curve) is calculated. The effect of matrix yield strain on the R-curve is significant,
while the influence of the matrix strain-hardening rate and initial fibre waviness is
slight. R-curves predicted by the finite element method agree qualitatively with those
predicted using a cohesive zone model, although there are quantitative differences.
Prediction of the initiation of microbuckling is found to be in good agreement with
experimental data for a carbon fibre epoxy composite.

1. Introduction

Long fibre-polymer matrix composites, such as carbon fibres in an epoxy matrix,
possess excellent tensile properties resulting from the high tensile strength of the
fibres. However, they fail in compression by plastic microbuckling at stresses of only
about 60% of their tensile strength (Awerbuch & Madhukar 1985; Soutis et al. 1993).
Structural components made from long fibre composites typically contain fastener
holes and cut-outs; they may also suffer service damage, for example in the form of
holes, fibre fractures and delaminations. These imperfections reduce the compressive
strength by inducing stress concentrations and by promoting the initiation and prop-
agation of microbuckles. Compressive failure from a hole in a composite laminate has
been modelled with varying degrees of sophistication, including the maximum local
stress criterion (Peterson 1974), the net section stress criterion, the average stress
failure criterion (Nuismer & Labor 1979), the point stress failure criterion (Rhodes
et al. 1984), the Whitney & Nuismer (1974) model, and more recently the Soutis,
Fleck & Smith (Soutis et al. 1991) model.

The Soutis, Fleck & Smith (Soutis et al. 1991) model is based on the notion of
a cohesive zone in which damage around an open hole is represented by a line-
crack loaded with a normal compressive traction. The magnitude of the traction is
taken to decrease linearly with increasing overlap of the crack faces. Experimental
work carried out to study the compressive failure of notched composites (Soutis et al.
1991; Soutis et al. 1993) has confirmed that compressive failure is governed by plastic
microbuckling of the 0° plies and that the Soutis, Fleck & Smith model adequately
predicts the effects of hole size and lay-up upon notched compressive strength. This
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Figure 1. An infinite kink band in a unidirectional composite. Fibres within the band have an
initial misalignment angle ¢.

engineering model takes as its input the compressive fracture toughness and the
unnotched strength of the laminate. From the design and manufacturing points of
view, it is desirable to predict the unnotched strength and the fracture toughness
from the mechanical properties of the basic material constituents: the fibres, matrix
and the lay-up geometry.

It is now well-established that the unnotched compressive strength o, is governed
by imperfection-sensitive plastic microbuckling and that the imperfection exists in
the form of fibre misalignment (Argon 1972; Budiansky 1983; Budiansky & Fleck
1993; Fleck et al. 1993). Slaughter et al. (1993) considered microbuckling from an
infinite band of uniform fibre misalignment ¢, as shown in figure 1; the unidirectional
composite is subjected to a remote axial stress 0> parallel to the fibre direction, an
in-plane transverse stress o and an in-plane longitudinal shear stress 7°°. The
infinite band is inclined with respect to the fibre axes such that the normal to the
band is at an angle 8 to the nominal fibre direction, as shown in figure 1. For the
case where the composite displays a rigid-perfectly plastic in-plane response the
compressive strength is given by

(o) o0
Ty — T —oF tanf

¢ b
where 7, is the shear yield strength of the composite (Slaughter et al. 1993).

By using the above kinking theory, the unnotched strength of a unidirectional
lay-up may be predicted in terms of the shear properties of the composite, the fibre

O, ~

(1.1)
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misalignment angle and the remote multiaxial stress state. On the other hand, a
theoretical study of the prediction of compressive fracture toughness has been lack-
ing. The compressive fracture toughness K. has been measured for a wide range of
lay-ups of T800/924C carbon-epoxy material with centre-cracked specimens (Soutis
et al. 1993). The measured value of K. is found to be independent of initial notch
length, in support of the concept of a compressive fracture toughness. Sutcliffe &
Fleck (1993) investigated the effect of the specimen size relative to the bridging
length scale r, = K2 /02 on the transition between small-scale and large-scale bridg-
ing of notched specimens. They concluded that, if the bridging length scale r, is
small compared with the specimen dimensions, the specimen fails when the stress
intensity at the tip of a sharp notch equals a critical compressive stress intensity
factor K.. When 7, is not small compared with either the initial notch length or the
unnotched ligament then it is necessary to include the details of the crack bridging
law in a cohesive zone calculation to predict the failure load accurately.

In the current study, a finite element analysis is used to investigate the initia-
tion and propagation of a microbuckle from the tip of a traction-free crack under
remote compressive loading. The analysis is relevant to compressive failure from a
sharp notch, where the width of the notch is sufficiently large to ensure that the notch
faces do not touch under the compressive loading. An R-curve behaviour is predicted
whereby the microbuckle length ¢ increases with increasing compressive mode-I stress
intensity K. The sensitivity of the R-curve to the matrix shear strength, fibre bend-
ing stiffness and to the initial fibre waviness is determined. An exploratory study is
also conducted into the effect of a superimposed mode-II component on microbuck-
ling. Section 4 describes a large-scale bridging model of microbuckle initiation which
uses a crack-bridging law derived from infinite band calculations of microbuckling. R-
curves calculated using this bridging analysis are compared with R-curves predicted
by the finite element model.

2. Finite element formulation

Consider a composite panel containing a sharp notch under remote compressive
loading. If the notch is sufficiently sharp it behaves as an open crack. When the region
of nonlinearity at the tip of the crack is small compared to the crack length, the
nonlinear region is embedded within the crack tip elastic K-field and the condition
of ‘small scale yielding’ is met. Then, the stress field in the vicinity of the crack
tip can be determined using a boundary layer formulation: a domain containing a
crack is loaded on its outer boundary by a compressive K-field of mode-I type. In
the present study we make use of the commercial finite element code ABAQUS (1994)
to examine the development of microbuckling from the tip of the traction-free crack
in a unidirectional composite under a compressive mode-I K-field.

(a) Finite element mesh

A sketch of the small-scale yielding problem is shown in figure 2a. The initial
notch is aligned with the z-direction and the fibres are parallel to the y-direction. A
full mesh is employed in order to allow for the existence of non-symmetric crack tip
buckling modes. The outer boundary of the mesh is subjected to the displacement
field associated with a compressive mode-I stress intensity factor in an orthotropic
elastic solid, as given by Paris & Sih (1969). Two distinct regions of mesh are distin-
guished in figure 2a: an outer mesh and an inner mesh (detailed in figure 2b). The
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Figure 2. (a) Sketch of a unidirectional composite with a semi-infinite crack under a remote
mode-I stress intensity factor Ki.

inner mesh consists of alternating layers of fibres of thickness d, and of matrix of
thickness t. The relative magnitudes of d and ¢ are chosen to achieve a fibre volume
fraction ¢ = d/(d + t) = 2. Since the fibres carry significant bending stresses during
microbuckling they are represented by eight-noded quadratic-interpolation elements;
the matrix undergoes predominantly plastic shear deformation and is represented by
four-noded linear-interpolation elements. For the inner mesh shown schematically in
figure 2b there are 25 fibres ahead of the crack tip, and six fibres behind the crack
tip; the inner zone of the mesh is of height 36d. The tip of the crack is located at the
boundary between a matrix layer and a fibre layer, with a fibre immediately ahead of
the crack tip and the adjacent matrix layer immediately behind the crack tip. Unless
otherwise stated, all fibres are straight in the undeformed configuration. The outer
mesh consists of four-noded linear-interpolation elements with elastic—plastic proper-
ties representative of the composite; beam elements are embedded in the outer mesh
in order to model the fibre bending resistance and to provide the main contribution
to the longitudinal stiffness E,, of the composite.

The full mesh has 6676 elements and the ratio of the inner mesh area to the total
mesh area is 3.6 x 10~%. Material properties for the inner and outer meshes are given
below. Small-scale yielding conditions are maintained by ensuring that the plastic
zone size is much less than the overall mesh size.

(b) Shear properties of the composite

When the composite is loaded by an in-plane shear stress 7 parallel to the fibre
direction, the measured shear strain is well fitted by the Ramberg-Osgood relation

l=1+%(1>, (2.1)
Yy o Ty Ty
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Figure 2. (b) Details of the mesh near the crack tip. The inner mesh consists of alternating
fibre and matrix elements, while the outer mesh consists of matrix and beam elements.

ite shear yield strength, v, is the shear yield strain

where 7, is the measured compos

The shear modulus G is defined by the

and n is the strain hardening exponent.

curve and equals 7,/7v,; the Ramberg-Osgood

material parameters used in our calculations are

initial slope of the measured 7—y
parameter o, is taken as % The

summarized in table 1. For the majority of the calculations we select the material
properties to represent those of unidirectional Toray T800 carbon fibres in a Ciba—

Geigy 924C epoxy matrix. This material has been intensively examined within the

authors’ laboratory (Soutis & Fleck 1990)
been measured by Jelf & Fleck (1994).

and its Ramberg—Osgood parameters have
In the following two sections we develop

constitutive relations for the finite elements of the inner and outer mesh, based on

the composite shear response (2.1).

(¢) Material properties of the inner mesh

The fibres are taken to be isotropic and linear elastic, with a Young’s modulus of

0.32. These values are typical of Toray

240 GPa and a Poisson’s ratio of v¢
T800 carbon fibres, which have a fibre diameter d = 5 pm. The properties of the

Ey =

Proc. R. Soc. Lond. A (1996)
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Table 1. Materials constants used in the calculations

(Unless otherwise stated, n = 3.5 and o, = 108 MPa (v, = 9.2x 10™%), when material properties
are typical of unidirectional T800/924C carbon fibre-epoxy material. The properties of the outer
mesh beam elements are detailed in §2.)

inner mesh:  inner mesh: outer mesh:
composite fibres matrix four-noded elements

E.. (GPa) 9.25 240 6.4 18
E,, (GPa) 162 isotropic isotropic isotropic
G (GPa) 6.8 91 2.3 6.7
Vay 0.0195 0.32 0.40 0.34
oy (=+/37,) (MPa) 10.8-1080 — 10.8-1080 10.8-1080

3 3 3
@ 7 — 7 7
n 3.5-100 — 3.5-100 3.5-100

matrix in the inner region are chosen so that the overall shear response within the
inner region matches the measured response of the composite in shear. The in-plane
response of the matrix is modelled by a Ramberg-Osgood nonlinear deformation
theory solid. In uniaxial tension the strain € in the matrix is related to the tensile

stress o by

€ o a \"

() o
EYm OYym Oym

where n is the strain hardening exponent, oy, is the uniaxial yield strength and
€ym 18 the yield strain of the matrix. Young’s modulus for the matrix is given by
E = oym/eym and the constant «, is related to o, by the argument given below.
Assumed properties for the fibres and matrix are summarized in table 1.

Budiansky & Fleck (1993) show how the properties of the composite can be related
to the Ramberg—Osgood parameters of the matrix. First, they make the assumptions
that the fibres are rigid in shear and that the shear strength 7, of the matrix equals
that of the composite ¢,. The uniaxial yield strength of the matrix oy, is given by
Oym = \/§'rym. The shear modulus of the matrix G,, is derived from the composite
modulus G using the rule of mixtures

Gm = (1-0)G. (2.3)

Assuming that the matrix behaves as an isotropic elastic—plastic solid, Young’s mod-
ulus for the matrix E,, is given by E,, = 2(1 + v;,,)Gp,; here we shall take Poisson’s
ratio for the matrix v, equal to 0.40, obtained by independent tests on a Ciba 924C
Geigy matrix (Sutcliffe 1995, personal communication). Fleck & Budiansky (1993)
show that the strain-hardening parameter n is the same as for the composite, but
that a,, in equation (2.2) should be taken as

W = 2(1 + V) e (2.4)
In practice in our finite element simulations we do not make the small correction
(2.4) but take ap, = o = 2.
Proc. R. Soc. Lond. A (1996)
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(d) Material properties of the outer mesh

Limitations of computer memory and computation time preclude modelling of the
outer mesh by alternating layers of fibre and matrix elements. Instead, the outer
mesh is modelled by a combination of four-noded elements and line-beam elements.
The tangent stiffness matrices of these two elements will then be summed to provide
the effective tangent stiffness matrix for the composite in the outer mesh.

The four-noded elements are modelled as an isotropic deformation theory solid
that is consistent with the Ramberg-Osgood shear response (2.1) of the composite.
Young’s modulus E for the four-noded elements is related to G by the isotropic
relation £ = 2(1 + v)G. Here, Poisson’s ratio is taken to be that of the composite
for straining in the axial y-direction.

Now consider the beam elements in the outer mesh. The axial stiffness and bending
stiffness of the beam elements are deduced as follows. The contribution of the fibres
to the axial stiffness of the composite is given by cFE¢ where Ef is the longitudinal
modulus of the fibres and c is the fibre volume fraction. The fibres also endow the
composite with a bending stiffness. Simple beam theory for rectangular fibres of in-
plane width d, Young’s modulus E; and volume fraction c gives the relation between
the couple stress per unit area m in the composite and the associated curvature
d¢/dy as

CEfd2 d¢

12 dy’

where ¢ is the fibre rotation and the y-axis is aligned with the fibre direction. In the

related study of Fleck et al. (1993), the fibre section is taken to be circular and the

factor in (2.5) is 16 rather than 12. In the present study we consider two-dimensional

alternating layers of fibres and matrix, and it is consistent to consider the fibres as
having a rectangular section.

Consider an array of beam elements of spacing L embedded within the four-noded
elements of the outer finite element mesh; the beam elements are aligned with the
fibre direction. Suppose that the axial modulus for the material of each beam is Ey,,
its second moment of area is [}, and its in-plane width is d,. Then, in order for the
mesh to possess the desired axial stiffness and bending stiffness of the composite, the
following relationships are enforced:

Ebdb = CLEf (26)

(2.5)

and
EbIb = 1—12‘CLEfd2. (27)

Since one can specify independently all three parameters Ey, d;, and I}, for a beam
element in the finite element calculation, it is necessary to fix arbitrarily one of
these three parameters. A simple approach is to assume that Young’s modulus of the
beam equals that of the fibre, E}, = E;. Then, the beam section area and the second
moment of area must satisfy the identities d, = cL and I, = %CLCF with ¢ equal to
the measured value of 2 for T800/924C composite.

In order to embed the beam elements within the four-noded linear elements of
the outer mesh, shared nodes are tied. In the region of mesh gradation, the smaller
elements are tied to the larger elements using the ‘linear tie’ option within ABAQUS:
the nodes of the smaller elements are constrained to deform according to a linear in-
terpolation scheme between the nodes of the neighbouring larger elements. Attention
is also paid to ensure continuity of fibre rotation at the transition between the inner

Proc. R. Soc. Lond. A (1996)
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and outer meshes. This is achieved by placing beam elements along the ends of the
eight-noded fibre elements at the boundary of the inner mesh. The additional beam
elements are of length equal to the width of the eight-noded fibre elements and are
ascribed a high bending stiffness (three orders of magnitude higher than that of the
beam elements of the outer mesh). The mid-node of each additional beam element
is tied to the end of the beam elements of the outer mesh.

3. Finite element predictions of microbuckle initiation

Finite element results are now presented for the initiation of a microbuckle from a
sharp notch. First, results are given for the evolution of the stress and deformation
fields as a function of remote Kj. The sensitivity of the microbuckling response to
composite material yield strength, strain hardening exponent and the magnitude of
initial fibre misalignment is then examined. The section concludes with an exam-
ination of the knock-down in microbuckling response when a small mode-II stress
intensity is superposed on the compressive mode-I stress intensity.

(a) Development of microbuckling from the notch tip

Details of the microbuckle development are presented in this section, with mate-
rial properties chosen to represent a unidirectional T800/924C carbon fibre-epoxy
composite. The deformed mesh is shown in figure 3 at three levels of applied Kj,
labelled A, B and C. Under increasing compressive Ki, the fibres near the crack
tip rotate and the matrix suffers combined shear and transverse straining. At low
levels of applied load (such as state A, Kj/G+/d = 1.8) the deformation state is
nearly symmetric about the crack plane. The crack profile is shown by overlapping
of traction-free crack flanks behind the tip. At a higher load (state B, K;/G+/d = 2.6)
a pronounced buckle develops at the crack tip; the buckle is asymmetric with respect
to the crack plane. Under a further increase in K7i, the buckle spreads in the trans-
verse z-direction and can be considered to be composed of two microbuckles inclined
at +20° with respect to the transverse x-direction, as shown by state C in figure 3.
Nucleation of the microbuckle involves large tensile transverse strains in the matrix
layer surrounding the crack tip. The current analysis includes neither failure of the
matrix nor of the fibres: if transverse failure of the matrix were to be incorporated
into the analysis then a split would develop at the crack tip, and blunt the stress
concentrating effects of the crack tip. In practical carbon fibre-epoxy laminates, off-
axis plies lie adjacent to the 0°-plies and prevent split formation under compressive
loading (Soutis et al. 1993). Since the purpose of the work is to explore microbuckle
development in the 0°-plies and so provide insight into the compressive response of
practical multidirectional laminates, split development was not investigated further.

To deduce the relationship between the extent of microbuckling and the level of
compressive K} we need to define the boundary of the microbuckle zone. Microbuck-
ling results in a drop in the load carrying capacity of the fibres. The microbuckle
length is determined by comparing the mean axial stress in the composite directly
ahead of the crack tip with the axial stress associated with the compressive mode-I
elastic K fieldt. This comparison is illustrated in figure 4. At the lowest load (state

t To facilitate the method, the mean axial stress distribution in the composite was found by multi-
plying the axial strain in the beam elements and at the centre of fibres directly ahead of the crack by
the axial modulus of the composite.

Proc. R. Soc. Lond. A (1996)
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Figure 3. The deformed mesh at three stages of compressive loading. No amplification of
deformation is displayed. The states A—C are marked on figure 5a.

A) the stress distribution is very nearly that of the elastic solution. At an increased
load (state B) the axial stress falls slightly below the elastic value near the crack tip.
As the load is increased further (state C) the stresses fall below the elastic solution
for a considerable region ahead of the crack tip. We arbitrarily define the extent of
the microbuckle as the region where the axial stress lies more than 10% below the
elastic stresses. The locations of the microbuckle tip at the various loads are marked
by arrows on figure 4. Using this definition of microbuckle length, the finite element
calculations show that a finite load is required for microbuckle initiation, just above
that of state A. The value of this initial load will depend on the details at the tip;
for example, this load will depend on the initial crack tip geometry.

The projected length of the buckle ¢ along the transverse z-direction is plotted as
a function of K7 in figure 5a: we refer to this plot as the compressive R-curve for the
composite. States A to C, illustrated in figure 3, are marked on the corresponding
curve in figure 5a with n = 3.5. A local maximum in the R-curve is observed at
K;/G+/d = 2.6 (corresponding to state B of figure 3b). In order to capture this snap-
back phenomenon under prescribed K-loading, the Riks’ algorithm is used within
the ABAQUS (1994) program.

(b) Effects of material properties and initial fibre misalignment on the R-curve

Infinite band calculations on the initiation of microbuckling (Fleck & Budiansky
1991; Budiansky & Fleck 1993) suggest that the unnotched compressive strength
increases linearly with the shear strength of the matrix and is inversely proportional

Proc. R. Soc. Lond. A (1996)
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Figure 4. The distribution of mean axial component of stress ¢y, in the composite immediately
ahead of the crack tip, along the line ¥ = 0. The stress distribution is given at three stages of
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Figure 5. {a) K1/G+/d versus projected microbuckle length £ for a range of values of the Ram-
berg-Osgood exponent n. v, = 9.2 x 107>, (b) K1/G+/d versus projected microbuckle length ¢
for a range of values of shear yield strain v,. n = 3.5.

to the degree of fibre misalignment ¢, as given by relation (1.1). Budiansky & Fleck
(1993) demonstrate that the infinite band compressive strength is relatively insen-
sitive to the strain hardening exponent n. In this section we explore whether these
infinite band findings also hold for microbuckle initiation from a sharp notch.
Figure 5a shows that the strain hardening exponent has only a moderate influence
on the magnitude of the R-curve. With 7, fixed at 9.2 x 1072, the normalized load
K;/G+/d required for a given microbuckle length decreases by a factor of about two
when n is increased from 3.5 to 100. In figure 5b, R-curves are given for a range of

Proc. R. Soc. Lond. A (1996)
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values of the shear yield strain ,, with the strain hardening exponent n held fixed
at 3.5. Since the shear modulus G is the same for each curve, a change in the value
of v, = 7,/G reflects a change in the value of the shear yield strength. Figure 5b
also includes results for an elastic matrix. We note that the magnitude of v, has a
significant influence on the R-curve.

Sutcliffe & Fleck (1994) have measured the R-curve associated with in-plane mi-
crobuckling of T800/924C unidirectional composite. An initiation compressive frac-
ture toughness of K; = 42 MPam!/? is deduced from their raw data (figure 5 of
Sutcliffe & Fleck 1994), corresponding to a value of K;/G+/d = 2.76. This is in good
agreement with the predicted snap-back value for K;/G+/d of 2.6 found from the
finite element calculations, see figure 5a.

Next, we examine the effect of fibre misalignment on the compressive R-curve.
Long fibre composites usually contain fibre misalignment or waviness, typically of
the order of 2-3° for polymer matrix systems (Yugartis 1987). The compressive
response is examined for two meshes. For both meshes, the fibre misalignment angle
¢ is ascribed the profile ¢ = ¢¢ sin(my/w,) within a rectangular region surrounding
the crack tip, with w, = 12d. The crack tip is placed within this region of local
waviness, such that the crack tip butts against a fibre layer and there are two wavy
fibres to the left of the crack tip and seven to the right. In mesh I, ¢9 = 2.3°,
and in mesh IT ¢y = —2.3°: we describe these as ‘forward’ and ‘backward’ waviness
respectively. Both meshes are illustrated in figure 6a.

Results for meshes I and I are compared with the R-curve for the original mesh
(containing perfectly aligned fibres) in figure 6b. It can be seen that the initial wavi-
ness changes only the details in the vicinity of the snap-back buckling load. Mesh II
with backward waviness displays the strongest snap-back response at the local max-
imum in the K;—¢ response and mesh I with forward waviness shows the lowest
strength at this point. This is consistent with the observation that the distribution
of initial fibre misalignment of mesh I is qualitatively of the same shape as the fibre
rotation distribution in state B of figure 3. The initial fibre misalignment of mesh
IT is of opposite sign to the deformed fibre shape in state B: a snap-through event
occurs in order to pop-in the fibre rotation into the shape given in figure 3b.

(¢) Estimated K value for fibre failure

It is found experimentally (Soutis & Fleck 1990) that the width of a microbuckle
band is set by fibre fracture in tension due to local fibre bending. It is instructive
to post-process the finite element results to determine the maximum tensile strain
€max in the fibres ahead of the crackt as a function of the applied K. The maximum
tensile strain is plotted as a function of Ki in figure 7a for various values of shear
yield strain (with n = 3.5), and in figure 7b for various values of strain hardening
exponent n (with v, = 9.2 x 107®). At low levels of applied K7 the strain due to
bending in the fibres is less than the mean axial compressive strain in the fibres,
hence the maximum fibre strain is negative. At larger values of K the maximum
fibre strain €.« becomes tensile due to increased bending of the fibresf. We note
that large tensile values of maximum axial strain €y, develop in the vicinity of the

t The precise location in the fibre layers at which the axial strain component ey, is a maximum is
dependent upon the magnitude of Ki. In general, it occurs in the first fibre placed immediately ahead
of the crack tip, although not necessarily straight ahead of the crack.

1 The loops in the curves for vy = 9.2 x 10~ shown in figures 7a, b are associated with unloading of
the first fibre of the crack at the pop-in buckling load.

Proc. R. Soc. Lond. A (1996)
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Figure 6. (a) Sketches of initial fibre waviness in the crack tip region. The waviness in the
z-direction is exaggerated by a factor of four: (i) ‘forward waviness’ and (ii) ‘backward waviness’.
(b) K1/G+/d versus projected microbuckle length ¢ for forward and backward waviness.

pop-in buckling load (state B of figure 3). Since the tensile failure strain of carbon
fibres is typically 2-3%, fibre fracture is predicted in all cases. Recall from figures 5a, b
that the K7 level to achieve a given length of buckle £ increases with increasing -,
and decreasing n. These features are reflected in the plot of K;/G+/d versus €pay:

for a fixed value of enmax, K1/G+/d increases with increasing 7, and with decreasing
n.

(d) Effect of mode-miz on buckling response

Since microbuckling is essentially a shear instability it might be expected that in-
plane remote shear would seriously degrade the compressive strength. Equation (1.1)
for the infinite band unnotched compressive strength predicts that the axial strength
o. decreases to zero as the remote shear stress 7> is increased to the shear yield
strength 7, of the composite.

R-curves for pure mode-I loading and for combined mode-I and II loading are
given in figure 8a, plotting the mode-I component of load K;/G\/d against the
microbuckle length £. The microbuckle length was again estimated by considering
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Figure 7. (a) Maximum axial strain in the fibres throughout the mesh emax as a function of
K1/G+/d for a range of values of shear yield strain v, with n = 3.5. Note that emax is com-
pressive at low loads, but then becomes tensile with increasing load. (b)) Maximum fibre strain
€max a8 & functsion of K1/G+/d for a range of values of the Ramberg-Osgood exponent n, with
Yy =9.2x 1073,

stresses directly ahead of the crack tip. We note that the addition of a 10% mode-II
component superimposed on the mode-I component affects the initial part of the
R-curve but that, once the microbuckle is initiated, the R-curve lies close to that
without a mode-II component. This behaviour is qualitatively different from the
infinite band response (1.1).

The development of microbuckling from the crack tip is shown in figure 8b for the
case of compressive mode-I loading with a superimposed 10% mode-II component.
The deformed mesh is given at the three states of loading A, B and C marked on
the R-curve of figure 8a. It is noted that the presence of the mode-II component
deactivates the microbuckle oriented at 20°.

(e) Discussion

In our finite element study we have neglected the effect of fibre fracture on the mi-
crobuckling collapse. Moran et al. (1994) have recently found that fibre fracture does
not accompany microbuckle growth in IM8 carbon fibres/PEEK matrix composites.
Experimental observations in the authors’ laboratory of a number of carbon fibre
composites confirm these findings and show that the observed R-curve is relatively
insensitive to the occurrence of fibre fracture. We surmise that the above finite ele-
ment calculations of the early stages of microbuckle initiation will remain accurate
when the first few fibres near the crack tip do suffer fracture during microbuckling.

It is commonly observed during microbuckling that fibres behind the microbuckle
tip rotate by twice the band angle 3 and then ‘lock up’. The role of lock-up of the
matrix has been ignored in the current analysis and would need to be considered
in more detail to be able to calculate the evolution of the microbuckle beyond the
initiation phase.

4. Large scale bridging model of compressive failure

Crack bridging models have had notable success in the prediction of damage from
notches in engineering materials under remote tension. They have also been used to
estimate the development of microbuckling from a hole in a composite under compres-
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Figure 8. (a) Effect of mode mix upon microbuckle growth. The projected microbuckle length
is plotted against the applied stress intensity factor Ki/G+/d for mode-I loading and for
mixed-mode loading with Ki1/K1 = 0.1. (b) The deformed mesh for mixed-mode loading with
Ki1/K1 = 0.1. The mesh is shown at three stages of loading corresponding to states A—C marked
in figure 8a. No amplification of deformation is displayed.

sion (Soutis et al. 1991; Sutcliffe & Fleck 1993). The usual strategy is to concentrate
the inelastic deformation associated with plasticity, cracking, microbuckling and so
on within a crack and to assume some form of traction-displacement bridging law
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across the crack faces. For example, in the Dugdale analysis of plastic yielding in met-
als from the root of a notch, it is assumed that the bridging normal traction across
the crack faces equals the tensile yield strength of the solid. The material response
elsewhere in the cracked specimen or structure is assumed to be linear elastic.

Here we shall compare the R-curves calculated by the finite element analysis with
R-curves predicted by crack bridging calculations. The appropriate crack traction-
displacement law is derived from the infinite band collapse response of the composite.

(a) Calculation of crack bridging law

The crack bridging law is derived from an infinite band calculation of fibre mi-
crobuckling as follows. In the infinite band calculation we determine the collapse
response of a long panel of composite containing an initial infinite band of fibre
waviness. The extra remote displacement Awv associated with the microbuckle under
a remote stress o is defined by the end shortening of the panel minus the con-
tribution from elastic shortening. Consider the crack bridging law associated with
microbuckling from the root of a sharp notch. Since two microbuckles develop at in-
clinations +4 from the notch root we assume that the crack traction 7" versus crack
overlap 2v bridging law equals the remote stress o versus twice the extra remote
displacement response 2Awv of the single infinite band.

Fleck & Shu (1995) have recently developed a finite strain finite element formu-
lation of fibre microbuckling. The in-plane combined shear and transverse response
of the composite is taken to be that of a deformation theory elastic—plastic solid
with Ramberg—Osgood hardening behaviour described by equation (2.1). The axial
response of the composite is taken to be linear elastic and the fibres provide the
composite with a finite bending resistance. A couple stress formulation is used to
account for the moment-curvature relation (2.5) of the fibres.

The finite element formulation of Fleck and Shu (1995) has been used to calculate
the infinite band collapse response for the geometry shown in figure 1. The initial
imperfection is taken to consist of an infinite band of misaligned fibres; the normal
to the band is inclined at an angle of § = 20° with respect to the remote fibre
direction. Fibres outside the band are initially straight, and fibres within the band
are given an initial misalignment ¢ = ¢ cosmy/w for |y| < fw. The initial width
of the band w is taken to be w = 20d. This value is representative of observed kink
band widths. Although the maximum strength of the infinite band is sensitive to
the value assumed for ¢g, the post-critical collapse response is almost insensitive
to ¢g. Since we shall use the crack bridging analysis to examine the development
of a microbuckle in initially straight fibres we require the infinite band collapse
response for initially straight fibres. Upon loading the perfect composite, an elastic
bifurcation occurs when o attains the Rosen value of the in-plane shear modulus G;
thereafter ¢ drops steeply with increasing Av. Numerical convergence difficulties
were encountered in calculating the initial post-collapse response for the case of
perfectly straight fibres; adequate accuracy for the post-collapse response is achieved
by assuming a small value for ¢q of 0.1°. Further details on the calculation procedure
for the infinite band are given in Shu & Fleck (1995). The infinite band collapse
response can be written in the non-dimensional form

o> Avy/G E..
'5 =f <mﬁy,n7ﬁ, ?) ) (4-1)

where, unless otherwise stated, we take v, = 9.2 x 1073, n = 3.5 and E,,/G = 1.36.
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These values have been chosen to give the same constitutive response as that assumed
in the finite element calculations of § 3. The collapse response is given in figure 9a for a
range of strain hardening exponents and in figure 9b for a range of shear yield strains.
Typically, the collapse response consists of a monotonically decreasing stress > with
increasing end shortening Awv of the structure. With continued end shortening, a state
of steady-state band broadening is achieved, whereby end shortening is associated
with broadening of the band of rotated fibres. Within the band the fibre rotation
is uniform. Recent experimental observations of this steady-state band broadening
phenomenon have been made by Moran et al. (1995). The non-dimensional collapse
response is sensitive to the value of ,: the post-collapse load increases by a factor
of about 20 when 7, is increased from 9.2 x 10™* to 9.2 x 1072, see figure 9b. In
contrast, the collapse response is relatively insensitive to the value assumed for the
strain hardening exponent n: as m is increased from 3.5 to 100, the collapse load
drops by at most a factor of three, see figure 9a.

(b) Bridging analysis

The finite element analysis of §3 was used to estimate the R-curve associated with
buckling from an initial crack under a remote compressive mode-I stress intensity
factor K. Buckling from the initial crack is by the growth of two microbuckles
oriented at +20° with respect to the plane of the crack. In the cohesive zone model
we replace the pair of microbuckles by a single cohesive zone with appropriate crack
bridging law as detailed subsequently.

We use the infinite band response (4.1) as the nonlinear crack bridging law in
the cohesive zone calculation: the normal traction 7' across the crack faces of the
cohesive zone is assumed to equal the remote compressive stress o> of the infinite
band calculation. Since, in the finite element model for compressive fracture, there
are two inclined microbuckles emanating from the initial crack, we model the crack
face overlap 2v of the cohesive zone by twice the remote extra displacement of the
infinite band calculation 2Awv. Thus the crack bridging law in the cohesive zone model
follows from (4.1) as

o™ Avy/G E..

The general calculation method for the cohesive zone model has been described by
Cox & Marshall (1991) and further numerical details are given by Sutcliffe & Fleck
(1993). Consider a semi-infinite crack with a cohesive zone existing over a length £
back from its tip. The normal compressive traction on the crack faces within the
cohesive zone is designated T'(z), where z is the distance back from the crack tip to
the point of interest.

The stress intensity factor Kt due to a distribution of normal traction 7'(z) over
the cohesive zone of length £ is given by the integral

Kt = /Z T (xz)m(z) dz. (4.3)

Here, the weight function m(z) is the crack tip stress intensity factor for a pair of
unit point loads placed on the crack faces a distance x from the crack tip, and acting
normal to the plane of the crack. For a semi-infinite crack in an infinite general
anisotropic body, Sih et al. (1965) show that this weight function is identical to the
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Figure 9. Infinite band collapse response in the form of remote axial stress o versus extra
remote displacement Av/d, for a single infinite band inclined at an angle 8 = 20°. (a) Effect
of magnitude of strain hardening exponent n on response, for v, = 9.2 x 1072; (b) effect of
magnitude of yield strain 7, on response, for n = 3.5.

isotropic weight function, given by Tada et al. (1985) as

m(x) = /2/7x. (4.4)
The crack opening profile vr(z) of the cohesive zone (i.e. half of the crack opening
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displacement), due to a normal compressive traction 7'(z) on the faces of the crack,
is given by

1
vp(x) = E’/ T(z")h(x, z") dz’, (4.5)
where the equivalent elastic modulus E’ is defined by
1 1 V2r g \12 E, 1/2
— == L Vys + == | (4.6)
E' 2E.,E,, E., 2G

and h(z,z’) is the Green’s function for the crack face displacement along the crack
flanks at a position 2’ due to a pair of crack wedging forces of unit magnitude at z.
When the crack lies along a principal material axis of an orthotropic material, the
weight function method described by Paris et al. (1976) can be used to show that A
for the orthotropic material is again identical to the isotropic form

f+\/_
NE -V |

The crack displacement profile vx due to the remote applied stress intensity factor
K is (Tada et al. 1985)

h(z,z') = (4.7)

7T

4K>\/x
EN?2r
We assume that stresses are bounded within the solid so that the total stress intensity
factor vanishes at the tip of the cohesive zone, thus

K>+ Kr=0. (4.9)

Relation (4.9) is used below to solve for the length of the cohesive zone length £ as a
function of K*°. In order to solve for the traction distribution within the cohesive zone
we set up an integral equation in T'(z) as follows. The crack face overlap displacement
2v due to the crack tractions T' and to the remote load K> follows from (4.5) and
(4.8) as

3 _4K>z 2 f+\/“
U(CE)—UK+'UT———-“——E/\/% +7TE’/T() _\/?

Now, the crack overlap displacement 2v is related to the compressive traction T'
across the cohesive zone by the inverse of relation (4.2), which we rewrite as

E% = 1 @) . (4.11)

Relations (4.10) and (4.11) may be combined to give an integral equation in 7', which
in non-dimensional form appears as

L (TE)Y G \'? K
fl(?)“l(zmyy) dE'\/E

+<2G )I/Qgg TTE) ) [VEEVE
7E,,) dE ), G — e

vg(x) = (4.8)

(4.10)

ae’, (4.12)

where { = x/¢ and ' = 2/ /4.
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In order to solve (4.12) we express K as a function of the cohesive zone length £
by substituting (4.3) and (4.4) into (4.9), leading to the following integral equation

in T'(¢):
1 T(é) B €G3/2 1 _ET_(SI_) é ET(§/>H \/-5-+\/? ,
d <G >_dE'E,};2/O ( T G \/;“L\/; c ! \/g_\/?)dé-
(4.13)

This equation is solved by dividing the cohesive zone into N elements of equal length
(typically, N = 100). The traction distribution within the cohesive zone is taken to be
piece-wise linear, with triangular distributions of crack face traction with peak value
T; centred on the ith node. The integrals in equation (4.13) are calculated numerically
at the node points &; for triangular distributions of traction of unit magnitude at the
N node points. Equation (4.13) is expressed as N simultaneous equations, containing
these influence coefficients. The set of nonlinear algebraic equations for 7; is solved
using a modified Powell hybrid method in the form of a NAG subroutine (NAG
1986). The solution gives us the length of the cohesive zone ¢ as a function of K>,
which may be written in the following non-dimensional form:

ek K>
dE/E;{,z =9 d1/2E’1/2E;§4G1/4

E:v:v
,"yy,n,ﬂ, —GT> . (414)

(¢) Comparison of results of bridging analysis with finite element predictions

The R-curves predicted by the cohesive zone model are compared with the R-
curves from the finite element computations in figure 10a for n in the range of 3.5
to 100, and in figure 10b for +, in the range 9.2 x 10™* to 9.2 x 1072, Results are
given for the full bridging laws displayed in figure 9 and for a simplified Dugdale
bridging law of a constant bridging stress o}, and a finite crack tip toughness Gi;p.
The value of oy, is set by the asymptotic value of 0 for large Av/d (taken here
as 2Av/d = 40). Gy, is the area under the (0> — oy,) versus 2Av curve; it is the
area under the crack bridging curve additional to the contribution from the uniform
traction oyp.

Consider first the results shown in figure 10a for the strain hardening parameter n
varying between 3.5 and 100. For n = 3.5, predictions using the simplified Dugdale
bridging law agree very well with the finite element calculations, while the full cohe-
sive zone bridging law calculation under-predicts the applied load by between 20 and
50% for a given microbuckle length as compared with the finite element calculation.
Quantitative agreement between the finite element results and the Dugdale bridging
law is less good for n = 15 and 100, although the qualitative effect of changes in n
are reproduced well by the bridging models, at least for large £.

Figure 100 illustrates the change in the predicted R-curve as the yield strain v,
changes by two orders of magnitude. There is good qualitative agreement between the
predictions of the cohesive zone models and the finite element calculation, although
again there are quantitative differences.

Figure 11 compares the stresses ahead of the crack tip found from the finite el-
ement calculations, from the simplified Dugdale model and from the full cohesive
zone bridging model. Also shown is the elastic stress field. Results are at a load
corresponding to state C of figures 3 and 4 with n = 3.5 and =, = 9.2 x 1073. The
bridging models both show a peak in stress at the tip of the microbuckle. This is a
consequence of the high strength corresponding to the small fibre rotations at the
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Figure 10. Comparison of R-curves calculated from cohesive zone and finite element calculations.
(a) Effect of magnitude of strain hardening exponent n, for v, = 9.2 x 107%; (b) effect of

magnitude of yield strain vy, for n = 3.5. , finite element results; - - - -, simplified Dugdale
model; — - — -, full bridging law.

tip of the cohesive zone. In contrast the finite element calculation does not have a
pronounced peak in stress. The stress distribution at the crack tip (z = 0) associated
with microbuckling blends smoothly into the crack-tip field ahead of the microbuckle.
At the crack tip the normalized microbuckle stress ¢/G is 0.15 while the predicted
stress using the infinite band bridging law is approximately half this value. The de-
tailed differences between the solutions shown in figure 11 explain the quantitative
differences observed between the R-curves calculated from the cohesive zone models
and the finite-element analysis.

The cohesive zone model assumes elastic behaviour outside the cohesive zone.
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Figure 11. Comparison of the composite mean axial stress ahead of the crack tip calculated from
the finite element and cohesive zone models. Mode-I loading with v, = 9.2 x 1072 , n = 3.5 and
K1/G+/d = 2.8, corresponding to state C of figure 3.

Examination of the stress state found in the finite element analysis reveals that
the microbuckle is surrounded by a domain of plastic shear, mainly along the fibre
direction. The above cohesive zone model suffers from the following deficiencies.

(i) The assumed bridging law considers only normal tractions with no influence of
shear tractions on the bridging response. In fact the finite element results of figure 8a
for mixed mode loading show that the effect of shear tractions is not straightforward
and would not be well modelled by simple modification of the bridging response.

(ii) The cohesive zone model assumes elastic behaviour outside the cohesive zone.
A more accurate model could be developed whereby the field beyond the cohesive
zone is deforming plastically. Such an approach has been developed by Tvergaard
& Hutchinson (1994) recently, but relies upon a finite element procedure for its
implementation.

5. Conclusions

Finite element calculations have been used to predict initiation and the early stages
of growth of a microbuckle from a crack. The microbuckle length has been estimated
by finding where the stress ahead of the crack falls significantly below the stress for
an elastic homogeneous material. R-curves (showing the dependence of the applied
stress intensity factor on the microbuckle length) have been derived. In some cases
this curve displays a local maximum: snap-back buckling occurs. The influence of
matrix shear yield strain on the R-curve response is significant; the effect of strain-
hardening exponent is relatively minor. The predicted microbuckle initiation load
is found to be in good agreement with experimental data for a carbon fibre epoxy
composite.

Waviness has only a slight influence on the details of the R-curve, rather than
the dominant role found in the infinite-band collapse response. A small effect of
waviness on the R-curve is consistent with the notion that the initial notch acts as a
large imperfection in the structure, and induces waviness ahead of its tip. The finite
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element calculations show that a mode-II component on the crack tip does not knock
down the failure load significantly. This is in contrast to the infinite-band response,
where shear knocks down the collapse load considerably.

A comparison has been made between the finite element calculations and bridging
calculations wherein the infinite band collapse response is used to infer the R-curve.
The bridging calculations adequately predict the effects of strain hardening and
matrix yield strain on the R-curve, although the details of the stresses ahead of the
crack tip are not accurately modelled.
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