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ABSTRACT

A model is presented for the dynamic compressive response of polymer matrix fiber composites. The model
includes the effects of fiber misalignment and material nonlinearity as well as material inertia. The role of
fiber bending stiffness is included via a couple stress formulation. The response of fiber composites to
suddenly applied, constant compressive axial load is examined. It is found that under constant load, inertial
effects contribute to a reduction in the critical stress for composite failure. This reduction is greatest for
composites with long initial fiber imperfection wavelengths. For a given load, there is a range of initial
fiber imperfection wavelengths that will result in composite failure. Within this range, there is a preferred
wavelength, which results in the shortest failure time. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION

Advanced fiber composites have gained widespread acceptance as structural materials.
The benefits of high specific strength and stiffness provided by aligned fiber composites
are sufficient to outstrip competing cost considerations in weight critical applications.
This is currently most evident in the aerospace industry, but fiber composites are also
becoming more common in the automotive and sporting goods industries.

The mechanisms of failure in composite materials are more complex than in mono-
lithic materials. The ability to predict failure accurately for arbitrary loading con-
ditions is important for the efficient design of composite structures, particularly since
fiber composites often exhibit little deformation before rupture (Hull, 1981). The
complexity of composite failure means, however, that an understanding of uniaxial
strength of a unidirectional fiber composite does not translate into an ability to
predict strength for general loading of a laminated, multidirectional composite—the
mechanisms of failure may be different. In addition, imperfections in the fibers and
matrix result in large amounts of scatter in composite strength. An understanding of
the mechanisms of failure is required to predict failure reliably. This understanding
is also needed for the development of composite materials with greater strength.

The subject of this paper is the dynamic, axial compressive failure of fiber
composites. The motivation is the potential use of composites in submersible hulls,
which may be subjected to shock loading. Much attention has already been focused
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Fig. 1. Schematic diagram of a microbuckle kink band.

on the static compressive failure of fiber composites. The compressive strength of
aligned fiber composites is often as low as 60% of the tensile strength. An important
mechanism for static compressive failure of polymer matrix materials is plastic mic-
robuckling (Argon, 1972; Budiansky and Fleck, 1993). Microbuckling is a shear
instability and occurs by the rotation of fibers within a kink band of width 10-20
fiber diameters (Fig. 1). Typically, the normal to the kink band is inclined at an angle
of 15-30°. Microbuckling has also been observed in aluminum alloy composites
(Schulte and Minoshima, 1991) and in carbon—carbon composites (Evans and Adler,
1978) and may be a significant failure mechanism in compression—compression fatigue
(Huang and Wang, 1989 ; Slaughter and Fleck, 1993a) and in compressive creep
failure (Jelf, 1993 ; Schapery, 1993 ; Slaughter and Fleck, 1993 ; Slaughter et al., 1993).

Argon (1972) has correctly interpreted microbuckling as a plastic collapse phenom-
enon. He assumed that collapse occurs by the rotation ¢ of fibers which are initially
misaligned by a small angle ¢ within a kink band. The fibers are taken to be inex-
tensible and the composite shear response is assumed to be rigid-perfectly plastic with
shear yield stress 7,. Continuity of traction on the boundary of the kink band implies
that the compressive strength g, is given by o, = 1,/¢. Experimental observations of,
for example, Piggott and Harris (1980) and Jelf and Fleck (1992) support the plastic
collapse model of microbuckling for polymer matrix composites. Budiansky and
Fleck (1993) extended this kinking model of microbuckling to include nonzero kink
band angles (f # 0) and plastic strain hardening in the form of a Ramberg—Osgood
strain hardening relation. These kinking models neglect the effect of fiber bending
stiffness. An alternative couple stress model, which takes fiber bending stiffness into
account, has been developed by Fleck ez al. (1995). In the current paper, the couple
stress model is extended to include inertial effects.

The dynamic behavior of fiber composites is not well understood and has only
recently begun to be addressed. The lines of inquiry have followed several paths. The
dynamic stability of composite structures has been addressed by Shaw ez al. (1993),
Mamalis et al. (1994), Bogdanovich and Friedrich (1994) and Gilat and Aboudi
(1994). These investigators have analyzed the stability of structures with varying
loading conditions and geometries, and examined the role of ply orientation and
initial imperfections. The vibration damping characteristics of fiber composites has
also been studied (Lesieutre, 1994 ; Saravanos, 1994 ; Greif and Hebert, 1995). The
passive damping properties of fiber composites have important implications for appli-
cations involving flexible structures. The impact and penetration resistance of fiber
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composites have obvious ramifications for military applications and have also been
investigated (Lagace et al., 1994 Silling and Taylor, 1994).

The objective of this paper is to present a micromechanical model for the dynamic
compressive response of an aligned fiber composite. Results are presented for constant
axial load. There are no available experimental results for this loading condition, but
experimental results for constant strain rates ranging from 107> to 10° s~! have been
obtained for steel reinforced epoxy composites by Sierakowski et al. (1971). Jenq and
Sheu (1993) have examined the high strain rate behavior of stitched and unstitched
glass/epoxy composites. These studies show an increase in dynamic compressive
strength over static compressive strength for constant strain rates. They also show
that, at moderate strain rates, the mode of failure is analogous to microbuckling in
static compressive failure.

2. DYNAMIC COUPLE STRESS MODEL

A micromechanical model is presented for the dynamic compressive response of an
axial ply in an aligned fiber composite laminate. The fibers are assumed to have an
initial imperfection in the form of a misalignment distribution. The localized nature
of the microbuckles that form during compressive failure means that they are in a
state of plane strain. The composite is treated as a “smeared-out” continuum—the
bending resistance of the fibers is assumed to give rise to couple stresses within the
solid. A variation of this model has been used previously for quasi-static deformation
(Slaughter and Fleck, 1994 ; Fleck et al., 1995) and a finite element implementation
of the quasi-static couple stress model has been used to examine microbuckle initiation
(Fleck and Shu, 1995).

2.1. Kinematics

Consider the fiber composite of length L shown in Fig. 2. A coordinate system
(x, y) is defined with the coordinate unit vectors i along the mean fiber direction and
j in the transverse direction. The fibers are assumed to be inextensible and to remain
perfectly correlated along the direction ¢ = —sin fii+cos ffj. Note that the correlation
angle fis an input parameter in the analysis and is set to the value of the experimentally
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Fig. 2. Schematic diagram of a fiber composite used in the couple stress model.
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observed kink band angle formed during microbuckling (f =~ 30°).f The model is
one-dimensional and all field parameters are uniquely expressed as functions of
x+ ytan . The fiber misalignment distribution is given by the initial angle subtended
by the fibers and the mean fiber direction ¢ (x+ y tan ff), or equivalently by the initial
displacement in the y-direction # (x+ y tan ). The angle ¢ and the displacement & are
related by

<

)

-
Q
2

where ¢ is assumed to be small.
The displacement in the x-direction is negligible since the fibers are treated as
inextensible, giving

u~0. 2

The fiber rotation ¢ (x+ytanp) is assumed to be small and is related to the dis-
placement in the y-direction v (x+ y tan ) by

v

The components of material acceleration are

a, ~0,
0%v
a, = EF’ “4)

where ¢ is time. It is convenient to define the state of strain in axes aligned with the
local fiber direction. The in-plane components of strain are

g ~0,
ov  Ov

&r = 5); —atanﬁ,
ov

where ¢ and &g are the longitudinal and transverse normal strain components and y
is the engineering shear strain.

+ The analysis to follow does not predict the kink band angle. It will transpire that the minimum value
of the critical stress for dynamic compressive failure always corresponds to f = 0, which is not in agreement
with experimental observation. It has been suggested (Budiansky, 1983) that the kink band angle is
determined by the two-dimensional distribution of initial fiber waviness, which would mean that a one-
dimensional model, such as presented here, would be intrinsically unable to predict the kink band angle.
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2.2. Equations of motion

The stresses acting on an elemental volume of the composite are shown in Fig. 3.
These stresses are averaged locally over the fibers and matrix; the length scale of
interest in this analysis is large relative to the fiber diameter d and the fiber spacing.
oy is the normal stress in the fiber direction, oy is the transverse normal stress, 7, is
the sliding shear stress in the fiber direction, and 7y is the transverse shear stress. The
fiber bending stiffness gives rise to a couple stress, or moment per unit area, m. The
in-plane shear stresses 7, and 7 are not, in general, equal. For another example of
the use of couple stresses to account for bending stiffness that would otherwise be lost
in an homogeneous model of a heterogeneous material, see Biot (1967).

Assuming that the axial stress o is much larger than the other stresses, that the
gradient of the axial stress is much larger than the gradient of the sliding shear stress
7., and that the gradient of the fiber misalignment angle is small, the equation of
motion for the composite in the x-direction is

doL
o Y0 (©)
and the equation of motion in the y-direction is
ooy Otr 0*c  d*v 0%
o o +aL< s ™

where p is the density. [These relations follow in a straightforward manner from those
given previously by Fleck and Budiansky (1990).] Assuming that angular acceleration
is negligible, equilibrium of moments gives the relation between the couple stress and
the shear stresses

om

a =T, —Tr. ®

Equations (6)—(8) can be combined, using the assumption of perfect correlation in
the c-direction, to give a single equation of motion

Fig. 3. Composite material element showing the on-axis composite stresses and the composite couple stress.
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where o, is independent of x.

2.3. Constitutive relations

It is assumed that the fibers behave as linear elastic beams undergoing inextensible
bending, and matrix contributions to couple stresses are neglected. Simple beam
theory for circular fibers of diameter d, Young’s modulus E;, and volume fraction ¢,
gives the relation between the couple stress m in the composite and the associated
curvature 0’v/0x* as

kP
16 ox*’

(10)

where E = ¢.E; is interpreted as the approximate elastic modulus of the composite in
the fiber direction according to the rule of mixtures, assuming that the fibers are much
stiffer than the matrix. The shear and transverse responses of the composite are taken
to be those of a nonlinear deformation-theory solid, as suggested by Budiansky and
Fleck (1993). They proposed an effective shear stress 7. defined by

2 =11+ 07/R?, (11)

where the constant R is interpreted as the ratio of yield stresses in transverse tension
and in shear. The constitutive relations for the combined stress state were given asf

=
T, L>

Ye \O
aT=Q)é; (12)

where the effective shear strain 7y, defined via the virtual work relation
TeYe = TLY + O1éT, 1S
2 =7+ R, (13)

The three parameter (y,, 7, 7) Ramberg-Osgood representation for the in-plane shear
stress—strain curve of the composite is taken as the connection

T.  3/(T.\"
Te Ty (14)
'Vy TY 7 ‘c)’
between the effective stress and effective strain. Here 1, is defined as the composite

shear yield stress and y, is the shear yield strain. Note from (14) that 7, is the shear
stress and 10y,/7 is the shear strain at the point on the stress—strain curve where the

+ An additional simplifying assumption made in the development of the constitutive relations was that
Ris also equal to  /E{/G, where E is the transverse elastic modulus and G is the elastic shear modulus of
the composite.
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secant modulus is 70% of its initial elastic value G = 7,/y,. The strain hardening
parameter » ranges from 1 to oo. For n > 1, (14) gives (dz/dy.), —o = 7,/yy = G. In
the limit of n = 1, (14) gives the misleading law y, = 10/7 (t./G), and so for n =1,
(14) is replaced by the law y. = 7./G ; this is referred to as the elastic case.

2.4. Governing equation

A governing equation for v(x,?) is obtained by combining the kinematic and
constitutive relations with the equation of motion (9). The effective strain (13) is given
in terms of displacement v by

=0 15
Ve = (15)
where o = /14 R?tan? B. Using (12), (5) and (15), the expression 7, +ortan f in
the equation of motion (9) can be rewritten in terms of the effective stress as
T, +ortan f = ar.. (16)

The equation of motion (9) is then combined with (16) and the constitutive equation
for the couple stress (10) to obtain the governing equation

Ed? o*v <8217 620> 0T 0*v
oL o

(17

6 o T o T ) Yo T P

where, from (15) and (14), 7. is a function of v given by

oov 1. 3/tY
——=—+z—])- (18)
yox 1, T\t
For a given initial misalignment distribution 7 (x) and axial stress history oy (f), the
governing equation can be solved for the displacement v(x, f).

The governing equation is nondimensionalized through the introduction of the
following nondimensional quantities
— 0oL v v

= Y= _ 19
G* ) '});,klo ’ '});klo ) ( )

3
Il
|
[
I
|
>
il

where y¥=1y,/a, G* = «’G, and [, and ¢, are a characteristic length and time for the

composite defined by
d |E d/pE
ly i = Tage (20)

Note that the corresponding characteristic velocity ¢, = /1, is equal to the transverse
elastic wave speed times o. Define also the normalized effective strain

e _ ¢

l// - )
Yy VY

Il

2D

which is related to the nondimensional fiber displacement by
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oY
Y= 3 (22)
Analogously, the normalized initial fiber misalignment angle is
- ¢ oY
=—=— 23

For a typical polymer matrix composite (T800/924C), d =8 um, E = 160 GPa,
Er =93 GPa, G = 6 GPa, g1, = 63 MPa, 1, = 60 MPa, p = 1.6 x 10’ kg/m’, and
B = 30° (Soutis, 1991). These parameter values correspond to a characteristic length
on the order of one fiber diameter, /, = O(d) = 8 um, and a characteristic time
to = 4x107° s. The normalized shear modulus and shear yield strain are G* = 7.2
GPa and yj = 0.0083.

Now, rewrite the governing equation (17) in terms of the nondimensional quantities

(19)

o*Y *’Y 9*Y\ 0°Y 0s
i T REPY? 2 T 50 24)

0¢ o¢ o0& 0t o0&

where the nondimensional effective stress s is a function of the nondimensional fiber

displacement Y as follows. For a Ramberg—Osgood strain hardening material, relation

(18) gives
oY 3
aé_s<1+7|s: ) (25)

while for a linear elastic material

oY
F=" (26)

2.5. Boundary conditions

Consider a length L of composite subjected to a constant axial stress ¢ applied at
a time ¢ > 0. It is assumed that the ends of the composite have zero applied moment
(couple stress m vanishes) and have zero transverse displacement v = (. A variational
statement can be constructed for the problem as follows. Consider all displacement
fields Y which satisfy the essential boundary conditions Y = 0 at ¢ =0, & where
&L = £(L) is the nondimensional length of the composite. Then the governing equation
of motion (24) is satisfied when the following functional is rendered stationary with
respect to Y

af1/0°Y\* 1 /oY oY\oY oY

Using integration by parts
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“fotY Y oY\ &Y
5H:J [a +A<a 49 >+a as]&Ydf

. | e oer e )T o T OE
YOG [y (0T _ar\ ] [
+[aéz 58 L_[aE +A<a¢+aé> S}SYO (28)

Since Y is arbitrary, the integrand in (28) vanishes when (24) is satisfied. The last
difference relation in (28) vanishes since 6Y = 0 at ¢ = 0, &,. The natural boundary
condition is

o*Y

F =0. (29)

£=0.4

The boundary condition (29) is a zero moment condition on the ends of the composite.
One notes in passing that the last difference relation in (28) results in a zero y-
component of traction condition on the ends of the composite, if the ends of the
composite are allowed to displace laterally.

The nondimensional parameter A can be written as

O.OO

Aza.

(30)

A is the nondimensional compressive axial load applied to the system. In addition, if
the load A is assumed to be zero until # = 0, then the initial conditions are

Y|..o=0, (€2))

oY

el " 0. (32)
3. RESULTS

The kinking model of microbuckling (Budiansky and Fleck, 1993) neglects fiber
waviness and produces an estimate for the critical load as a function of initial fiber
misalignment angle. The static couple stress model (Slaughter and Fleck, 1994 ; Fleck
et al., 1995) presents a more accurate estimate for the critical load by considering
the initial fiber misalignment angle distribution. The dynamic couple stress model
presented in this paper makes it possible to examine the role inertial effects play in
the compressive failure of fiber composites.

In this analysis, it is assumed that the applied load is a step function in time with
magnitude ¢ for ¢ > 0; the dynamic response of fiber composites under constant
loading is addressed. Given the nondimensional applied load A and the initial fiber
waviness, the displacement Y(¢, 7) can be obtained from the solution to the governing
equation (24).

It is assumed for simplicity that the initial fiber displacement distribution is
sinusoidal,
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- - 2

T(§) = T,sin (—’jé) (33)
where Y, is the initial fiber displacement amplitude and A is the initial wavelength.
The corresponding initial fiber misalignment angle distribution is

V() = U cos(zj—g) (34)

where Y, = 2nY,,/4 is the initial fiber misalignment angle amplitude and is termed
the initial imperfection angle. The solution to the governing equation (24) can be
expressed as

Y1) =& DY), (35)

where y = x(¢&, 1) is the amplification function.

If the initial fiber displacement distribution is periodic, with period 4, and the length
of the composite ¢ is an integer multiple of the wavelength, then by symmetry a
solution Y'(¢, 7) will exist which is also periodic with period A. This solution is assumed
to be the only solution of interest. Thus, in the analysis to follow, & = 4 and the
composite length is interpreted as being infinite. Under this assumption, and the
misalignment distribution (33), the boundary conditions are satisfied if

Ylf:(),éL = 0 (36)

3.1. Elastic solution

For a linear elastic material with constitutive equation (26), the governing equation
reduces to
'Y *Y 'Y *Y

664 +(A_1)6—62+5—’52= — 'a?

(37

This equation is analogous to that for dynamic elastic buckling of bars (Jones, 1989).
The solution to this equation is expressed in the form of (35) where the amplification
function is independent of position, i.e. y = x/(t) ; the dependence on time and position
are separable in the solution. Substituting (33) and (35) into (37), and dividing by
Y

d*y

i +[(@* +1)—A)lo*y = &*A, (38)

where w = 27/A is the frequency. The initial conditions (31) and (32) require

Xle=0 =0, (39)
dy
e 0. (40)

Solutions to (38) will be bounded if [(w®+ 1) —A] > 0 and unbounded otherwise.
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3.1.1. Critical load. For a given frequency w, the dynamic elastic critical load is
AS = 1+?. (41)

If A < A¢, the solution amplification function is

x(t) = a%[l —cos(ar)], (42)

where
a* = o’ [(w?*+1)—A],
b = Aw?. 43)

The amplification function oscillates in time, but remains bounded. This is dem-
onstrated in Fig. 4, where the frequency w = 1, corresponding to a critical load
AS = 2. As the load approaches the critical load, both the amplitude and wavelength
of oscillation increase. The mean value of (), about which oscillation occurs, is the
solution for static loading.

If A > A¢, the solution amplification function is

b
x(t) = — [cosh(ar) —1], (44)
a
where
a’> = 0’ [A—(w*+1)],
b = Aw?. (45)
10 — | S S R R I — |
A _ 4
/ Acc =0.8 (D -_ 1 i
8 | —
- A =0.7
I A
6 -1‘\—\;=0.6 ]
2(T) ¢ °
4 ]
2 -
O ) 1 1 I i 1 1 1 1 1 ] 1
0 4 8 ) 12 16
time, T

Fig. 4. Amplification function for a linear elastic constitutive relation and for loads less than the critical
load.
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Fig. 5. Amplification function for a linear elastic constitutive relation and for loads greater than the critical
load.

The amplification function is unbounded, increasing exponentially as time progresses,
as shown in Fig. 5. Therefore, Al can be reasonably defined as a critical load or
buckling load. This critical load is a measure of the dynamic compressive strength of
linear elastic fiber composites under constant loading. If A = A¢{, the fiber composite
is unstable, and the composite will fail ; if A < Ag, the fiber composite remains stable.

Note that the dynamic elastic buckling load A{ is independent of the initial mis-
alignment amplitude. In the limit as the initial misalignment wavelength approaches
infinity, the dynamic elastic buckling load approaches unity

lim Af = 1. (46)

This is the static elastic buckling load predicted by Rosen (1965) and Budiansky and
Fleck (1993) using static analysis: the dynamic elastic buckling load is the same as
the static elastic buckling load when the wavelength approaches infinity.

3.1.2. Critical frequency. For a given load A, initial imperfections with frequencies
greater than the dynamic elastic critical frequency

w: = A-1 (47)

will give rise to an amplification function (42), which oscillates stably in time. For
frequencies less than w¢, the amplification function (44) blows up exponentially. This
is shown in a plot of amplification function y(w, ) versus frequency w for different
values of time 7 at a load A = 2 (Fig. 6). The amplification functions for frequencies
w > w¢ are bounded in time while for w < w{ they increase monotonically.

The rate at which x(w, t) increases for w < w{ is not uniform; some frequencies



Dynamic compressive failure of fiber composites 1879

50 LA IR B IR SR SN ERLAR IR RN A B A R
| o], =+1/2 o, =1 A=2 |
40 stable ]
T=55 [——>
30 T=5 7]
o, T ]
o0 i

20

10

1 L 2 1

00 02 04 06 08 10 12 14 16
frequency, o

Fig. 6. The evolution in time of the amplification function versus initial imperfection frequency for a linear
elastic constitutive relation.

0

blow up more rapidly than others. The frequency with the greatest rate of increase
can be found by solving

a_

o 0, (48)

where y(w, 1) is given by (44). Initially, at time 7 = 0, the frequency w = ; has the
largest rate of increase, but as T — oo this preferred frequency decreases towards

A—1
e = [ 49
Wiim 2 ( )
Although all imperfections with frequencies w < w{ will grow exponentially, fre-
quencies near the preferred frequency wf,, will contribute to the most rapid failure.

3.2. Ramberg—Osgood strain hardening

So far the results obtained hold only for linear elastic materials. The more interesting
and physically relevant solutions to the governing equation (24) are for nonlinear
deformation. A representative nonlinear constitutive behavior is given by the Ram-
berg—Osgood strain hardening relation (25). An analytical solution to this nonlinear
partial differential equation is unavailable. However, a finite difference method is
found to give an accurate approximation to the solution. The time integration and
the second order space derivative are approximated by a central difference method
and the fourth order derivative is approximated by using a five node difference
method. The nonlinear effective stress is obtained from (25) through the Newton
method. The time step is controlled by the stability requirement. The details of the
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numerical method are described in the Appendix. The input parameters are the applied
load A, initial fiber displacement amplitude Y,, (or the initial imperfection angle ¥,,)
and the wavelength 1. The output is the fiber displacement distribution as a function
of time Y (¢, 7). The behavior of the displacement distribution as a function of time
depends on the load level, and this will be used to find the critical load. The numerical
method makes it possible to elucidate some characteristics of the dynamic plastic
behavior of fiber composites under constant load, which are different from both the
dynamic elastic behavior and static plastic microbuckling (Slaughter and Fleck, 1994).

3.2.1. Deformation. The solution to the nonlinear equation (24) is expressed in the
form of (35). The amplification function y has two dependent variables, time 7 and
position . For the same given initial fiber waviness, different applied loads result in
different amplification functions. Among all possible applied loads, the numerical
results indicate that there exists a critical load AZ. If the applied load is greater than
the critical load, the amplification function increases monotonically in time. This is
analogous to the dynamic elastic critical load, and is called the dynamic plastic critical
load. If the applied load is less than the dynamic plastic critical load, the amplification
function is an oscillatory function of time. This solution is stable, and the fiber
composite does not fail.

The numerical results indicate that when A < A, the fiber displacement distribution
maintains a nearly sinusoidal profile. In other words, when the solution is stable the
amplification function is a weak function of position ; there is little localization of
deformation. However, when A > A¢ there is a high degree of localization in the shear
deformation. Representative elastic and plastic deformed fibers with initial wavelength
A = 50 and initial imperfection angle ¥, = 4 are plotted in Fig. 7. The applied load
A = 0.6 is greater than the dynamic plastic critical load, as discussed below. The
corresponding normalized effective shear strain distribution y./y, = ¥ is plotted in

3 L L B R A R L R |
V,=4
A=0.6

3 I 1 1 1 1 1 1 1 I | 1 1 I I 1 1 2 1 1 1 A 1 P

0 10 20 30 40 50

Fig. 7. The normalized deformed fiber profile of a composite with sinusoidal initial fiber waviness.



Dynamic compressive failure of fiber composites 1881

15 T T T T | T T T T T T T T T T 7T 1 T T T

: n=>5 ' v, =

15 1 i3 i 1 PR S U 1 i PR 1 1 1 1 1 1 ]

Fig. 8. Shear strain distribution in a deformed fiber composite. Shear localization occurs for a plastically
deforming material.

Fig. 8. Figure 7 shows that the deformed configuration is no longer sinusoidal. Figure
8 illustrates the high degree of localization in deformation that occurs in regions of
high initial fiber angle for the Ramberg—Osgood strain hardening material. This
localization of deformation is interpreted as the formation of microbuckle kink bands.
When A > A¢, the composite will be said to undergo dynamic plastic microbuckling.

3.2.2. Critical load. For a given frequency w, there exists a dynamic plastic critical
load A¢ above which deformation will increase monotonically in time, and the fiber
composite will fail. The procedure for obtaining this critical load is as follows. Because
¥ is a function of position as well as time, attention is paid to the maximum value y,,
which from symmetry occurs at the position & = 1/4;

A
An(2) = x(z,r) (50)
If A > A¢, the amplification function will increase monotonically with time, i.e.
om
This inequality will hold for all time. If A < A, the inequality
om
m _ g, (52)
ot

must hold at some point in the time history.
To find the critical buckling load A¢, begin with an initial guess of the load and
check the derivative 0y,,/0t. If 0x.m/07 > 0 holds for all time (or some reasonably long
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Fig. 9. The amplification function maximum versus time for different loads. For loads greater than the
dynamic plastic critical load, the amplification increases monotonically with time. For loads less than the
critical load, the amplification function oscillates.

period of time), reduce the load ; if 0y,,/0t < 0 holds during the time period, increase
the load. Continue until the load at which
. OYm

lim 2 0 3
is found. This is the dynamic plastic critical load. An example of this procedure is
shown in Fig. 9, where the initial imperfection angle ¥,, = 4, the initial wavelength
A = 50, and the Ramberg—Osgood exponent » = 5. For the applied load A = 0.195,
it is found that the amplification function increases monotonically ; if the applied load
is reduced to A = 0.19, the amplification function is bounded and oscillates in time ;
however, if the load is A = 0.1915, it is found that the solution neither blows up nor
oscillates. This is the dynamic plastic critical load, A? = 0.1915. The elastic solution
for this load is shown for comparison in Fig. 9 as a dashed line. It is seen that the
elastic solution is stable ; the dynamic elastic critical load is greater than the dynamic
plastic critical load, AS > AS.

Figure 10 shows the critical load as a function of the wavelength for different
values of the Ramberg—Osgood parameter # and for the elastic solution. The initial
imperfection angle is Y,, = 4. It is seen that for A > 20 the critical load is nearly
constant and that there is little dependence on # for » > 5. The dynamic plastic critical
load is less than 25% of the dynamic elastic critical load for all Ramberg—Osgood
exponents # > 2. The conclusion drawn is that the elastic solution for dynamic
compressive failure of fiber composites greatly overestimates the critical load.

Figure 11 shows the critical load as a function of the initial imperfection angle
for different values of the Ramberg—Osgood parameter n. The initial imperfection
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Fig. 11. The dynamic plastic critical load versus the initial imperfection angle.

wavelength is 4 = 50. The dynamic plastic critical load decreases as the initial imper-
fection angle increases. It is seen again that there is little dependence on » for n > 5.

The dynamic plastic critical load is a function of initial wavelength, initial imper-
fection angle, and Ramberg—Osgood exponent

AS = AS(A, {&m: n)' (54)
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Fig. 12. The evolution in time of the amplification function versus initial imperfection frequency for a
plastic constitutive relation.

This is in contrast to the dynamic elastic critical load, which is only related to the
initial wavelength. For a typical polymer matrix fiber composite (T800/924C),
A =100,n = 4.5and \,, = 4 (Soutis, 1991). In order to find an approximate analytical
relation for (54) for engineering usage, the dependence of the critical load on 4 and n
is examined. The results indicate that (54) can be approximated by the following
relation

a as

d _ ay
Acthm) =aot o0 e Tum1 T e’

(55)

where n > 1, A > 6 and a,,...,a, are parameters related to the initial imperfection
angle ¥,,. For Y, = 4, ay, a,, a, and a; are 0.1340, 0.3000, 0.1178 and 1.091, respec-
tively. If the applied load is less than a,, the solution will remain stable regardless of
the values of A and »n. The relation (55) is based on over 100 computational data
points covering a range of parameter values n = 2-7 and A = 10-100. The relation
can be extrapolated to cover larger Ramberg—Osgood exponents and longer initial
wavelengths.

3.2.3. Critical frequency. For a given load A, initial imperfections with frequencies
less than the dynamic plastic critical frequency w? will lead to amplification functions
which blow up in time. This is shown in a plot of x,,(w, t) versus frequency w for
different values of time 7 at a load A = 2 (Fig. 12). For {,, = 4 and n = 5, it is found
numerically that w¢ ~ 1.4. This figure resembles that for the elastic solution (Fig. 6).
It is seen in comparing these figures that o > ¢ ; for a given load, the results for
plastic deformation predict a wider spectrum of frequencies that will result in com-
posite failure. ‘

The rate at which y,.(w, 7) increases for w < w¢ is not uniform ; there is a preferred
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Fig. 13. The amplification function versus the initial imperfection frequency for a linear elastic constitutive
relation and for a plastic constitutive relation.
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frequency which blows up most rapidly. This preferred frequency varies with time,
starting at w? at time t = 0 and decreasing to asymptotically approach a limiting
value wi,, as T — oo. In Fig. 12, the limiting frequency is found to be w{,, ~ 1.05. In
comparison with the elastic solution (Fig. 6), it is seen that w{,, > wf.,. The results
for A = 7 are shown in Fig. 13 for the elastic solution and plastic solution with n = 3
and n = 5. The difference in preferred frequency narrows as the load is increased.

3.2.4. Comparison of static and dynamic compressive failure. The dynamic plastic
critical load is normalized by the kinking model prediction of microbuckling and
compared with the results of the static couple stress model (Slaughter and Fleck,
1994). The results are plotted in Fig. 14. The dynamic critical load is less than the
static critical load when the initial wavelength is large. The predictions of the dynamic
and static couple stress models converge for small initial wavelengths. This indicates
that the inertial effect has more influence on initial imperfections with long wave-
lengths. Under constant applied load, the inertia favors microbuckling, which will
cause the dynamic critical load to be less than the static critical load. The dynamic
critical load is approximately 90% of the static critical load for large initial imper-
fection wavelengths.

The kinking model, which neglects fiber bending stiffness, provides a conservative
bound for the compressive strength of fiber composites when compared to the static
couple stress model. The fiber bending stiffness increases the critical stress for mic-
robuckling. This increase is greatest for short wavelength initial imperfections. In
contrast, under a constant dynamic load, inertia tends to decrease the critical load,
particularly for large wavelength initial imperfections. As a consequence, the kinking
model of microbuckling overestimates the critical stress for constant dynamic loading.
A conservative bound for these conditions is given instead by the fitting relation (55),
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Fig. 14. Comparison between the dynamic critical load and the static critical load.

A > a,(,,). For y,, = 4 (which corresponds to an initial imperfection angle of 2°
for T300/924C), a, = 0.1340. For engineering purposes, the kinking analysis gives an
acceptable estimate of the critical stress for initial imperfection wavelengths greater
than 20 fiber diameters.

4. SUMMARY AND DISCUSSION

A dynamic coupled stress model has been presented for the axial compressive
response of aligned fiber composites. The model accounts for fiber waviness and
nonlinearity in the composite constitutive relations. The model was used to examine
the response of fiber composites to a suddenly applied, constant compressive axial
load. The initial waviness was assumed to be sinusoidal and both a linear elastic
constitutive relation and a Ramberg—Osgood strain hardening constitutive relation
were used. It was found that there is a critical load above which the composite is
unstable, i.e. deformation of the composite increases monotonically with time. The
unstable deformation is seen to localize spatially in regions of high initial fiber
misalignment angle and this localization is interpreted as kink band formation, as is
seen in static compressive microbuckling.

A comparison with the predictions for static microbuckling indicates that, for a
constant load, the effects of inertia tend to decrease the critical load. Based on analysis
of the static couple stress model, it has previously been stated (Slaughter and Fleck,
1994) that the analytical result of a kinking model given by Budiansky and Fleck
(1993), which neglects the effect of fiber bending stiffness, provides -a conservative
bound to the critical compressive load for microbuckling. The analysis presented here
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shows that this is not true if inertial effects are considered. Instead, a conservative
bound is given by the numerically determined fitting parameter a,(i/,,) from (55).

For a given load, there is a range of fiber misalignment frequencies 0 < w < @,
(and wavelengths 2n/w. < A < o00), which will result in unstable deformation. Within
this range, there is a preferred frequency for which deformation increases more rapidly
than for the other frequencies. This preferred frequency varies with time, but tends
asymptotically to a limiting value wy, < w.. The presence of a misalignment at this
frequency will minimize the failure time of the composite.

A common apparatus used in the experimental study of the dynamic behavior of
materials is the split Hopkinson pressure bar. This apparatus results in a state of
constant axial strain rate, rather than constant load. A model for predicting the
dynamic behavior of aligned fiber composites under constant strain rate is therefore
of interest. An effort is currently underway to adapt the dynamic couple stress model
to these load conditions. Ultimately, a model capable of analyzing general load or
strain rate histories should be possible.
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APPENDIX A : NUMERICAL METHOD

A procedure for numerically solving the governing equation of the dynamic couple stress
model is outlined. Attention is focused on the Ramberg—Osgood strain hardening constitutive
equation (25). Rewrite the governing equation (24) as

*Y s 0°Y *Y
=T ST AT (), Al
e R (O | (A1)

where



Dynamic compressive failure of fiber composites 1889

5=

0
g =A

- (A2)

This is a one-dimensional dynamic equation. A finite difference method is used to approximate
both the time derivative and the space derivatives in the governing equation (A.1).

A.1. Finite difference approximation

Let Y¥ = Y (&, 1) where & = i(AL) and t, = k(Af). The finite difference expressions for the
derivatives are given by

PYT YE vk
[arz } N (Ar)? (A-3)
YT Yh,—Y*
-
FYT Y, —20h Y A
o) a2 a.9)
YT Y, —AYE Y —AYE Y,
E AL ' (A0

For the finite difference expression for ds/d¢ in (A.1), take the partial derivative of (25) with
respect to ¢&

0*’Y  0s 3n
Therefore
aZT ik
os |f [552 :Ii
[55] ==, (A.8)
i 1 + 7sr[~l
Here, s can be obtained from (25)
oYt
[&—} = s+2¢" (A.9)

by using Newton’s method. The numerical governing equation is

YA = 275 YA 4 (AD?BY, (A.10)

c_[osT [y (oYY
B"_[aél |:5é4:|l, A[a«?l g(&). (A.11)

where
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Fig. Al. Interdependence of nodes for stepping forward in time in the numerical procedure.

The computational procedure is shown in Fig. Al. Each unknown displacement is calculated
based on six known displacements.

A.2. Time step

The time step is controlled by the stability requirement

2
@a9" _ (A.12)
(AL)*
which can be written as
At = ¢(AL)?, (A.13)

where ¢ < 1. In this paper ¢ = 0.2.

A.3. Initial conditions

With the sinusoidal initial misalignment distribution

Y(¢) = Y, sin <¥>, (A.14)
the function g(&) is
2n\* .. . [2né
g9() = —A<7> Y. sm<7>. (A.15)
The initial conditions are
T? =0,
Y! = —(A)*g(&). (A.16)

A.4. Boundary conditions

For periodic sinusoidal initial waviness (A.14), the boundary conditions are given by

Y5 =0,
Y, =0, (A.17)

where A = n(AL). The input parameters are the applied load A, the initial wavelength 4, the
initial displacement amplitude Y, and the Ramberg—-Osgood exponent n. The output result is
the displacement distribution Y (&, 7).



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

