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ABSTRACT

The role of grain size on the overall behaviour of polycrystals is investigated by using a strain gradient
constitutive law for each slip system for a reference single crystal. Variational principles of Hashin—
Shtrikman type are formulated for the case where the strain energy density is a convex function of both
strain and strain gradient. The variational principles are specialized to polycrystals with a general multi-
slip strain gradient constitutive law. An extension of the Hashin—Shtrikman bounding methodology to
general strain gradient composites is discussed in detail and then applied to derive bounds for arbitrary
linear strain gradient composites or polycrystals. This is achieved by an extensive study of kernel operators
related to the Green’s function for a general “strain-gradient” linear isotropic incompressible comparison
medium. As a simple illustrative example, upper and lower bounds are computed for linear face-centred
cubic polycrystals: a size effect is noted whereby smaller grains are stiffer than large grains. The relation
between the assumed form of the constitutive law for each slip system and the overall response is explored.

1. INTRODUCTION

It is well established that the macroscopic properties of polycrystals depend on the
grain size. The well-known Hall-Petch effect (Hall, 1951 ; Petch 1953) states that the
strength of polycrystalline metals increases with decreasing grain size. It is thought
that the grain size effect is due to the presence of spatial gradients of strain in each
single grain. These gradients are associated with the plastic inhomogeneity of slip and
are expected to be particularly significant near grain boundaries.

A qualitative physical interpretation of such constitutive behaviour as resulting
from a combination of “statistically stored” and ‘“‘geometrically necessary” dis-
locations has been proposed by Ashby (1970), and developed further by Fleck et al.
(1994). Their arguments suggest that a single crystal’s behaviour is controlled by a
strain gradient constitutive law. The geometrically necessary dislocations (and strain
gradient effects associated with them) introduce a length scale / into the constitutive
law and account for a size effect in the macroscopic response of a polycrystal.

In this paper we focus on the guantitative aspects of the homogenization problem
for polycrystals with constituent single crystals described by a strain gradient law.
Upon selecting the crystal’s constitutive law the question arises as to what is the
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resulting macroscopic behaviour of the polycrystal. The homogenization procedure
is expected to reflect a competition between two length scales: the intrinsic length
scale / introduced into crystal’s constitutive law by the gradient effects, and the scale
of the grain size a. The overall properties of the polycrystal are functions of //a, which
reflects the grain size effect.

The prediction of the effective properties of polycrystals from the constitutive
properties of the component crystals has been a focus of investigations for a long
time : this work, however, has focussed on conventional constitutive laws which do
not include a length scale and do not account for the size effect. One established
approach is based on variational methods laid down by Hashin and Shtrikman
(1962a,b) is the context of elasticity, and seeks to bound the total energy of the
polycrystal subjected to a macroscopic deformation. Hutchinson (1976) has obtained
elementary bounds and self-consistent estimates for the creep of polycrystals; each
individual crystal is treated as a multislip system (of Schmid type) with a power law
characterizing each slip. The model of Hutchinson was extensively studied by applying
more advanced nonlinear versions of the Hashin—Shtrikman method by Willis and
co-workers (e.g. Dendievel et al., 1991), and by deBotton and Ponte Castafieda
(1995). These more sophisticated approaches resulted in the attainment of improved
bounds for the overall behaviour of the polycrystal.

In the paper by Smyshlyaev and Fleck (1994) we have proposed an extension of
the Hashin-Shtrikman procedure to account for strain gradient effects, and applied
it to two-phased composites with a linear couple stress constitutive law for each phase.
This approach was developed further (Smyshlyaev and Fleck, 1995) to address the
overall nonlinear behaviour of two-phase composites with a J, isotropic strain gradient
constitutive law for the phases. Here we develop the above ideas and apply them to
polycrystals.

We begin with a general discussion of ““strain-gradient” deformation theories (linear
or nonlinear), and state the minimum principles. This framework is then specialized
to crystals which are assumed to deform by slip on a discrete number of slip systems.
The strain gradient crystal plasticity framework of Fleck and Hutchinson (1996) is
summarized, and a property of “instantaneous linearity” of such crystals is then
discussed. The instantaneous linearity motivates an extensive study of /inear strain
gradient polycrystals which is the focus of the rest of the paper. We discuss in detail
an extension of the Hashin—Shtrikman methodology as interpreted by Willis (1977,
1981, 1983, 1986, 1991) to general (not necessarily linear) strain-gradient composites.
This requires an extensive study of kernel operators related to a general “strain-
gradient” Green’s function, and of a “‘canonic” representation for an incompressible,
linear, isotropic strain-gradient constitutive law. Bounds are then derived for arbitrary
linear polycrystals. As a simple illustrative example, upper and lower bounds are
computed for a linear face-centred cubic strain-gradient polycrystal : a grain size effect
is noted.

Results are given for the macroscopic shear modulus p* of the face-centred cubic
polycrystals as a function of the shear modulus for each slip system u and the grain
size a. It is found that u* varies roughly as a~ ' in qualitative support of the Hall-Petch
grain-size effect. We emphasise that the Hall-Petch effect relates to the dependence of
yield strength of polycrystal upon grain size, and so the results presented here for the
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dependence of the macroscopic shear modulus upon grain size are meant only for a
qualitative comparison. Further, the analysis of the linear case is the first step in the
estimation of the grain size for non-linear polycrystals: in order to use the nonlinear
variational principle of Ponte Castafieda (1991, 1992) the effective properties of the
linear solid are required.

2. REVIEW OF “GRADIENT THEORIES”

2.1. The Toupin—Mindlin higher-order deformation theory

Toupin (1962) and Mindlin (1964, 1965) have developed a theory of linear elasticity
whereby the strain energy density w depends upon both the symmetric strain tensor
& = %(u,-‘ ;+u;;) and the second gradient of displacement #,; = u,;. Their theory
admits a straightforward generalization to nonlinear and inhomogeneous behaviour
as follows.

The strain energy function w is assumed to be a convex function with respect to its
arguments (&,%) for each point x of a solid of volume V. The total energy W stored
in the solid is determined by the displacement field u(x) within V'

W) = J w(e(u), n(u) ; x) dx

with ¢ and 5 derived from u, as given above.
The energy increment of the solid due to an arbitrary variation of the displacement
uis

5 W= j (O'jk(SSjk =+ Tijkérlijk) dx. (2 1)
|14

Here the ‘“‘conventional” stress ¢ is defined as the work conjugate to ¢ and, in
analogous fashion, the “higher stress” z is defined as the work conjugate to 5
ow ow
O =%, Tip=7 - 2.2
! asij o a'lijk 22)

Use of the divergence theorem transforms (2.1) into
oW =— J [(0k,; — Tijei)) O] dX + J (0 — T Ou + Tigenidu ;1 AS,  (2.3)
V S
where S is the surface bounding the volume V. Stationarity of the energy integral
with respect to variations of displacement field provides the equilibrium relation
Ujk,j— Tijk,ij == 0. (2.4)

To identify the required boundary conditions we note that du, ; is not independent of
du, on the surface S because, if du, is known on S, so is the surface gradient of du;.
Therefore, six independent displacement boundary conditions are required for correct
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formulation of the problem, e.g. prescribed values for u, i = 1,2,3 and their normal
derivatives.

In order to identify independent traction boundary conditions we resolve the gradi-
ent du, ; into a surface gradient D;0u; and a normal gradient n;Ddu,

5uk,j = Djéuk ‘+‘njD5uk, (2.5)
where
D;=(d;,—nn,)0,, D =n,o, (2.6)

and 0, denotes the partial derivative with respect to x,. Now substitute (2.4), (2.5),
(2.6) into (2.3) and make use of the surface divergence theorem (see, e.g. Mindlin,
1965) to obtain the following final form of the principle of virtual work

W = J [£e0u] dS+ J [R, *(Dduy)] dS, 2.7)

s
where the surface traction t, on the surface S'is
e = (04 — T, ;) + it T (Dony) — D j(n7) 2.8)
and the double stress traction R, on S is
Ry = ninjtyy. 2.9

To summarize, the displacement field u(x) must satisfy three equilibrium equations
given by relation (2.4) and either six traction boundary conditions given by (2.8) and
(2.9), or six displacement boundary conditions

u;(x) = u(x), Du(x) =v)(x), i=1,2,3, (2.10)

(or a mixture of them).
A corollary of the above principle of virtual work is the stationarity principle

J (085 + Tiuhi) =0 (2.11)
v

for any (e, ) derived kinematically from a displacement field u(x) and for any (s, 1)
satisfying the equilibrium condition (2.4) and zero traction conditions #, = R, = 0.
Note that in general the equilibrium relation (2.4) is understood in a “weak”
sense which implies that tractions and higher-order tractions are continuous across
interfaces if there are any. This makes the above framework applicable to composites.

2.2. Minimum principle

A minimum principle can be stated for W provided the strain energy density w is
strictly convex in (g, #). It states that the “true” energy W of the solid minimizes the
functional W(u) within the class of kinematically admissible fields u satisfying the
boundary conditions (2.10)

W < W(). . (2.12)
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Derivation of this principle follows along standard lines (see, e.g. Fleck and Hutch-
inson, 1993). Let u* be the “true” displacement field satisfying both the equilibrium
conditions (2.4) and the boundary conditions (2.10). Consider an arbitrary dis-
placement field u(x) = u*(x) + Au(x) satisfying the same boundary conditions. Denote
similarly the strain and strain gradient field derived from u

&(x) = &*(x) +Ae(x), 7(x) = 9*(x)+An(x).
Convexity implies

ow ow
58,,-(8 15 X) A+ e

w(e* + Ag, n* + Ay X) > we*, n*;x) + (&, n*; %) Anyy

for any (As, Ay). Upon integration over the volume V this inequality results in

W(u* +Au) = f

vV

w(e* +Ae, n* +An;x)dx = W(u*)+ J [oFAe;+ 15 An ] dx,

(2.13)

where o and 1}, are the “true” stress and higher stress, respectively. Use of the virtual
work principle (2.7) for éu = Au, coupled with zero displacement boundary conditions
for the virtual field du results in vanishing of the integral on the right hand side of
(2.13). This immediately gives the inequality (2.12) for W = W(u*) and arbitrary
u=u*+Au.

2.3. Complementary minimum principle

The complementary energy density (stress potential) ¢ can be introduced as a dual
tow

¢(e,7;Xx) =sup{e-a+n-t—w(e,n;x)}. (2.14)
(&)

Here and henceforth the dot sign means the scalar product of the tensors involved,
ie. &°06 = ¢;0,, 1°T = 1,7, If the function w is smooth and strictly convex then for
a fixed ¢ = ¢* and v = t* the supremum is attained at £* and #* such that

aw
a"lijk

ow
of =5 @n* %), =5 (" *x).
ij

0€:;

Thus, for a given stress (6*, t*) the corresponding strain (&*, n*) delivers the supremum
of (2.14), and
o(6*,7%;x) = e*6* +n* ¥ —w(e*, n*;Xx). (2.15)

The complementary function ¢ as defined by (2.14) is a convex function of its
arguments (o, 7). Therefore (2.15) implies that, in turn, the strain energy function w
is the dual of ¢

w(e*, n*;x) = sup {e* o +n* 1—¢(0,7;X)}
(o,7)
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with the supremum attained at ¢ = ¢*, T = t*, and therefore

d¢
¥ = —(g*. 7% o * k.
&) = 3o (6*,t%;x), 1k aTijk(a , 7% X). (2.16)

i

To formulate the complementary minimum principle define the complementary energy
of the solid of volume V by

D= J d(a*, t*;x) dx.
4

The minimum principle states that for all stress fields (¢(x), #(x)) in ¥ which are

(i) statically admissible, i.e. satisfy the equilibrium equation (2.4), and
(ii) satisfy prescribed traction boundary conditions (2.8), (2.9) on the boundary S,
the true complementary energy ® minimizes the functional

®(6,1) = J ¢(a(x), t(x) ; x) dx. 2.17)

This may be re-written as
® = O(c*,t*) < D(0,7). (2.18)
To sketch the derivation of (2.18) take an arbitrary stress field ¢ = 6*+Ag,

T = v*+ Az which satisfies conditions (i) and (ii). Employing convexity of ¢ and
(2.16) gives

®(c* +Ac) > J

vV

¢(6*,7*;x)dx+ J [Ac ek + At ] dx.
Vv

According to (2.11) the last integral vanishes since (As, A7) is an equilibrium stress
field with vanishing tractions on the boundary and (¢*,n*) is derived from a dis-
placement field u*. Thus,

®(c*+Ac) = J d(o*,t*;x)dx = D
Vv

and the complementary energy principle has been proved.

3. SUMMARY OF STRAIN GRADIENT MODEL FOR CRYSTALS

We summarize in Sections 3.1 and 3.2 below the crystal plasticity formulation of
Fleck and Hutchinson (1996). The instantaneous secant modulus is then defined in
Section 3.3 : this motivates a study of linear polycrystals in the remainder of the paper.
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3.1. Crystal kinematics

The general framework of the previous section is now specialized to crystals. The
crystal is assumed to deform by slip on a discrete number of slip systems. A particular
slip system, a, is characterized by a slip plane with normal m* and the direction of slip
s* in the slip plane. By neglecting elastic stretching of the crystal lattice and assuming
deformations to be small, the displacement gradient can be expressed as

U =Y+ ¢y

Here, the slip tensor y; is associated with an amount of slip y® on each of the slip
systems, i.e.

Vi = 2, 7P sPm (3.1)

(summation is taken over all slip systems), and ¢,; is the antisymmetric lattice rotation
tensor. Obviously, such deformation is incompressible, i.e. u;; = 0.

The objective is to develop a higher order constitutive law which involves both the
slips y® and the slip gradients.t To this end we express both the strain tensor ¢ and
the strain-gradient tensor # in terms of y® and y’. The strain tensor may be written
in the form

1 1
ey =5 +u,) =Y yPu, where pf = (sPm®+m®s®), (3.2)
o

and the strain-gradient tensor may be written as
Miei = Uije = Vipr + -

Kinematic compatibility dictates that the gradients of rotation are pre-determined to
accomodate the gradients of the slip (see Fleck and Hutchinson, 1996)

1
¢ij,k - yki,j - ykj,i _Eeijkequysp,q'

This results in the following kinematic connection between the strain-gradient tensor
N and the “slip-gradient™ tensor y;;

Wi = Vijk T Vrinj = Viji — %eijkequysp,q' (3.3)

Note that by definition tensor #;,; is symmetric in its first two indices, and is also
incompressible, i.e. Ny = Ny = 0 for j = 1,2,3. Assuming small deformations (3.1)
implies]

Yok = 2, V0 s0m?. (3.4)
Substitution of (3.4) into (3.3) results in

t Fleck et al. (1994) give the underlying physical motivation in their discussion of dislocation hardening
by “statistically stored” and “‘geometrically necessary” dislocations.

1 The terms containing s{% and m() are negligible. Indeed, if e.g. s° is the undeformed slip direction, then
for the “rotated” s, s; ~ s¢ + ¢,;s?. Therefore s5,, ~ ¢, which is negligible provided y® are small (see

3.3).
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Mo = Zv““ Yk (3.5)

where the resolution tensor ¥ is given by

@ = 3,80 m? +08,590mP — 5, sPm® +31%e;  (nosumonaw), (3.6

upon introducing the “transverse” unit vector t® = s® x m®. Note that (s, m®, t®)
forms a right-handed triad with t® in the slip plane and orthogonal to the slip
direction s®.

It is convenient to express the slip gradient y® in terms of the slip gradient y®%
along the slip direction s®, the slip gradient y%) along the normal m® to the slip
plane, and the slip gradient y(‘") along the transverse direction t®

vS =987 S =9mP s WP =087
Since (s, m®, t®) form an orthonormal basis, (3.5) transforms to

uk—Z{?(“)W(“)S ST +yQURTs, (3.7)

where the notation

Y@ = 505

M
YoM = mPm s,

1
DT = [(OmP s + 5017 mP —sPmP 1P + e (3.8)

has been introduced. Relation (3.7) gives the strain-gradient tensor # in terms of slip
gradients for each slip system.

Following the argument of Fleck et al. (1994), the slip y® on each slip system gives
rise to a density of “statistically stored dislocations”. The slip grad1ent 7@ is associated
with the storage of a density y@/b of “geometrically necessary” edge dislocations
along the t® direction, with Burgers vector b aligned with s®. Similarly, the slip
gradlent 7% is associated with the storage of a density % /b of “geometrically necess-
ary”” screw dislocations along the s direction with Burgers vector b also aligned with
s®. A slip gradient 7%} along the normal m® to the slip plane does not result in the
storage of ““geometrically necessary” dislocations.

3.2. Resolved stresses ; crystal constitutive laws

To specialize the principle of virtual work to the crystal multislip deformation,
substitute the kinematic relations (3.2) and (3.5) into (2.1). The energy increment due
to crystallographic slip y® is written in the form

SW = f Y [ty + QL 5y] dx. (3.9)
vV

o

Here, the work conjugate to y® is the Schmid resolved stress
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@ = 0',]/1,(]"‘), (3.10)

and, similarly, the work conjugate to the slip gradient % is

Q(‘Z) = thklpg?ko

which can be called the vector of higher order Schmid stress, Q®. Recall that the
hydrostatic part of ¢ does not contribute to the Schmid stress 7. In similar fashion,
the hydrostatic part of T does not contribute to the higher order Schmid stress Q.
The hydrostatic part 7" of = can be written in the form?

Tg‘k = :1(5ikfjpp+5jkfi1)p)- (3.11)

Note that " does not work through any incompressible strain gradient tensor # since
T{l/-k"[,:,'k = 0.
Specializing (3.9) to the basic triad (s, m®, t®) gives

SW = J Z [T(“)(Sy(“) + Q(“’(Sy(“) Q(u) (a) @) 4 Q(“)éy(“)] dx.

Explicit formulae for the resolved higher stress components @&, Q7 and Q% derived
from (3.7) and (3.8) are

Q.(Six) = Tl]kl//t('jqk)sa
Qﬁo;) = lek‘pg?;zM9
Q(Ta“) - Tl'jk l(';;zT. (3.12)

A fundamental assumption of Schmid’s model for a deformation theory version of
crystal plasticity states that the amount of slip y® on the slip system o depends on
stress ¢ only through the resolved stress 1. A “gradient” extension of this law is to
require that both the slip y® and the slip gradients 7@, %) and %@ depend only on
the resolved stress @ and the resolved higher stress Q@ =(Q%, 0%, 0%). This
assumption is supported micromechanically by the notion of statistically stored and
geometrically necessary dislocations (see, e.g. Ashby, 1970; Fleck et al., 1994) which
suggests that the amount of strain hardening of the slip system is governed by the
accumulated slip and the accumulated slip gradient on each slip system. Note that
the component 7§} of the slip gradient does not result in the storage of geometrically
necessary dislocations as has been discussed by Fleck et al. (1994): the work con-
jugates Q% are included for mathematical completeness. ‘“Physically” Q& should
vanish which imposes constraints on the higher order stress 7: 7,3 = 0, for all a.
The stress potential ¢ (g, 7), as introduced in Section 2.2, is of the form

¢(o,7) = Y ¢®(a,1), (3.13)

where the contribution of the slip system « is taken to depend only on the resolved
Stresses associated with this slip system

P® = p@ (1@, QW) = p@(x®; 0P,0,0¥). . | ‘ (314)

+ Obviously, the component t° = t—1" is “deviatoric” in the sense that 7§ = =, = 0.
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Here and elsewhere we assume no sum on « unless otherwise stated. Relation (3.14)
is equivalent to an independent hardening assumption. The strain & and the strain
gradient n are determined by the stress potential (3.13), (3.14) via (2.16), (3.10) and
(3.12) as

0 0o

8 an_ (31:(“) .uij ’
R Y C IR I
(%k Z[ 209 @S+ 209 My 209 @r | (3.15)
ij

Comparison of (3.15) with (3.2) and (3.7) implies

0 0 0 0
'y(“) = (@) ? V,(g) = (@) b V,(X} = (@) ’y,(;) = () * (316)
ot 00¢ 005 007

Thus, we may interpret ¢® as “single slip potentials”.

Note that the ¢® must be convex functions of their arguments (1, Q®) to ensure
convexity of the “total” potential ¢(s,t). Apart from this we impose no restrictions
on ¢®. Their exact form describes micromechanically the combined effect of densities
of statistically stored and geometrically necessary dislocations on the material’s hard-
ening, and must be found experimentally or through explicit modelling of dislocation—
dislocation interactions.

3.3. Linear constitutive laws and the “‘instantaneous linearity’ of nonlinear Schmid’s
crystals

Linear constitutive relations form an important particular case of (3.13) as will be
clarified later in this section. To describe such a linear behaviour an assumption is
made that the slips y® and the slip gradients y®, % and y§ are linearly related to
their work conjugates t®, 0%, Q0 and Q% via

1
y@ = — @,

n
1
@) (@)
y,(S l(a)z S
Y5 = l(u)z 04,
(@) — 1 (o) 3.17
VT _‘ul(]et)z QT' ( . )

Here u, plays the role of the shear modulus of the slip system o ; the three lengthscales
19, 12 and I¥ are introduced for dimensional consistency and adopt the role of
material lengthscales in the constitutive description.

The total stress potential corresponding to (3.17) is
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60,9 = Lo (600 U0+ 00 +aP QP G19
The slip shear moduli u, and the length scales /¥, [, I may vary from one slip
system to the next, and, for “inhomogeneous” linear crystals, from one material point
to the next.

The stress potential (3.18) for the linear crystal can be presented symbolically as a
quadratic form

¢(o,7) = 0' M 1pg0 g + t,,kﬂ,jkpq, par> (3.19)
where
M, 2 .uz(;a ).Ll,(;i‘]) (3.20)
is the conventional compliance tensor, and
’%ijkqu = Z': (l(zx))2 lﬁ'(;[k)s lkg“:})rs (l(a))z ffk)M I(’O‘(])’M (l(zx))z w’(la’grlpl(7o¢;)fT:|
(3.21)
is a higher-order compliance tensor. It follows directly from (3.19) that
= Mp0p5s Nik = M ijipar Tpar-
We note in passing that both M and .# are symmetric, i.e. M;,, = M,,; and

=M

parijks

M ijkpgr —
introduced.

The linear constitutive law (3.18) plays a critical role in the study of the overall
behaviour of polycrystals with nonlinear constitutive laws (3.13), (3.14) due to the
property of instantaneous linearity of a general Schmid crystal. Comparison of (3.16)
with (3.17) demonstrates that

which will be assumed henceforth whenever tensors of such type are

a

A (X) = T(a)[a @

( () Q(“))]

plays the part of the “instantaneous” shear modulus of the slip system ; similarly, the
instantaneous length scales /%, 12 and % are determined from

_a¢(a) (t(a), Q(u))"? —1 ’

fL(x)[P? = Q@

00§
- 'a (o) -1
ROOT = 09| 20, Q9) |
| 005 i
_a¢(a) q-1

AP = 0f ®,Q®) | . (3.22)

|00
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This simple observation means that a nonlinear crystal under prescribed loading
experiences the same response as a linear inhomogeneous crystal with variable par-
ameters 1,(x), /& (x), /¥ (x) and /% (x). In other words, if we knew these parameters
and could also solve the linear problem, we would know also the solution to the
nonlinear problem. Of course, these parameters themselves depend on the solution
via 7 and Q® as a consequence of nonlinearity.

This important property makes the strategy of Ponte Castafieda (1991, 1992),
deBotton & Ponte Castafieda (1995) applicable to study the effective properties of
nonlinear strain-gradient polycrystals in terms of the effective properties of related
linear polycrystals. This is worth a separate discussion which is beyond the purposes
of the present paper. This also motivates an extensive study of the effective properties
of linear strain-gradient polycrystals in the rest of this paper.

Now take as an example the case where the slip potentials ¢® are functions of a
scalar “resolved stress measure” s, where

s = [+ 9709+ O+ PP,
The measure s can be interpreted as the dual to one possible strain measure
e® =[(y) +(9y9) + I5SD + Py

associated with the total density p® of dislocations accumulated due to slip on the
system «. Recall that physically y$) should not contribute to the total dislocation
density which can be achieved by taking the limit /% — 0.

For such coupling ¢(a, 7) assumes the form

¢ =L 47G)

and (3.22) implies that the instantaneous linear parameters are

Ao = sP[(@@) (s

and

4. OVERALL PROPERTIES OF POLYCRYSTALS WITH
STRAIN-GRADIENT EFFECTS

4.1. Homogenization problem

A polycrystal is regarded as a collection of single crystals specified by a constitutive
law (3.13), (3.14) with a large number N of distinct orientations. The orientations of
the crystals are characterized by rotation tensors Q©, (r = 1,2,..., N). Therefore,
the stress potential of a rotated crystal ¢ relates to the ‘“reference’’ stress potential
via
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7 (e,7) = $p(a”,1"),

where ¢ and 7 are the stress and the higher stress in the rotated frame

" — N —
oy = Qpqujapqﬂ Tijke = QpqujQrkqur'

The total stress potential is
N
P(o,7) = Zlf O x)¢" (s,7), 4.1)

where f7(x), r = 1,2, ..., N are characteristic functions for the crystals orientations ;
fP(x) = 1if x belongs to a crystal with orientation r; £ = 0 otherwise.

Assume the polycrystal occupies a volume 7 and is subjected to uniform stress
boundary conditionst

tk = O-',-kn,-, Rk = 0. (4.2)

over the boundary S.

The size of the polycrystal V' is supposed to be much large then the “typical” grain
size a (the scale of the microstructure). The polycrystal is regarded as a macroscopically
homogeneous body and, therefore, & in (4.2) plays the part of a uniform macroscopic
stress : it is the uniform stress which a homogeneous material would experience under
the traction conditions (4.2). We emphasize here that under these boundary conditions
the macroscopic stress and strain are constant and therefore the macroscopic strain
gradient and higher order stresses vanish. The macroscopic (local) gradients, however,
do not vanish which affects indirectly the overall macroscopic behaviour of the solid
and gives rise to the grain size effect.

The objective is to estimate the total complementary energy of the polycrystal as a
function of &

DF) = LJ ¢(o,7)dx 4.3)
1)y

which can be regarded as an “effective” stress potential of the polycrystal.} If the

polycrystal displays no texture, i.e. if all crystals’ orientations are equally likely, then

®(5) is isotropic.

The influence of the scale of the microstructure ¢ on the overall behaviour of the
polycrystal described by @(5), i.e. the grain size effect, is anticipated to be a result of
a competition between the internal crystal lengthscales /¢, /§7 and /¥ and a.

Although the main motivation of this study is to develop homogenization methods
for nonlinear polycrystals to model the so-called Hall-Petch effect (the grain size effect
in plasticity) we concentrate in the remainder of this paper on the overall behaviour
of linear polycrystals. This step is critical due to the “instantaneous linearity” of
polycrystals with gradient effects as discussed above. This opens an avenue for

+ Recall that the higher order constitutive law (3.13) for (4.1) implies that the displacements, displacement
gradients, tractions (2.8) and double tractions (2.9) are continuous at grain boundaries.

1 We avoid here discussion of the dependence of ® on the macroscopic higher stress  which is zero due
to the boundary conditions (4.2). More accurately, (&) as introduced by (4.3) could be regarded as the
value of ®(5,7) at 7 = 0.
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implementation of the linear results to nonlinear homogenization problems following
the general strategy of Ponte Castafieda (1991, 1992) which has been adopted recently
to conventional polycrystals (deBotton and Ponte Castafieda, 1995). This strategy
has already been adopted by Smyshlyaev and Fleck (1995) for nonlinear two-phase
composites with strain gradient effects included. In the following section a Hashin—
Shtrikman variational principle is formulated in a form which does not necessarily
assume that the phases (or the reference crystal) are linear. We then specialize to the
linear case. Willis and co-workers (Dendievel et al., 1991) have used a nonlinear
variational principle of this type to derive bounds for nonlinear polycrystals. In
principle, this avenue is also open for nonlinear polycrystals with strain gradient
effects.

4.2. Hashin—Shtrikman variational principle

It is convenient to regard a polycrystal with a large number N of possible orien-
tations as a particular example of an N-phase composite. Each phaser,r =1,2,...,N
is described by a stress potential ¢ (e, 7) specified in the linear case by compliance
moduli M® and .#® given by (3.19). The whole aggregate is subjected to the traction
boundary conditions (4.2). The objective is to bound the total complementary energy
® of the polycrystal.

We follow here a general strategy laid down by Hashin and Shtrikman (1962 a,b)
and developed further by Willis (1977, 1981, 1983) and Talbot and Willis (1985) both
for linear and nonlinear “conventional” composites. First, a comparison medium
with stress potential ¢q(e, 7) is introduced.

To derive a family of lower bounds a function V({, k) can be defined as the dual to

¢(0,0) —¢o(0,7),

V(. x) =sup{o -+t k—P(0,7)+Po(0,7)} 4.9
for arbitrary ““stress polarizations” {;; and ‘“‘higher order stress polarizations” k. It
follows immediately from the definition (4.4) that

¢(0,7) Z 6 {+1 K+ do(0,7)— V((, k) (4.5)

for any values of @, 7, { and k. Therefore, for the complementary energy functional
defined by (2.17),

®(o,7) BJ[O"C+T'K+¢(0',T)*V(C,K)]dx-

V

Taking the infimum of both sides of the inequality within the class of statically
admissible (6(x), 7(x)) compatible with the boundary conditions (4.2), and employing
the complementary energy principle (2.18) results in

@) > (a(B?ﬁx»J [6°C+7 K+ (6, 7)— V(L k)] dx. (4.6)

The inequality (4.6) displays a family of bounds for the complementary energy &(3),
for arbitrary polarization fields ({(x), k(x)).
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If the comparison medium is chosen to be linear, i.€.
bo(0,7) =30"Moo+31 Mot 4.7)

then the infimum of (4.6) may be expressed in terms of linear operators AY, i = 1,2;
j = 1,2 which are related to the Green’s function for the comparison medium (Appen-
dix A). The result is

d@G) > ;a-Moa|V|+J [6:¢—3L AV —30 Ak —i AP —Jxc Ak — V(L ;%)) dx,
|4

(4.8)

where the operators A” are given in the Appendix A.

The lower bounds (4.8) generalize those developed by Hashin and Shtrikman
(1962a,b), Willis (1983) and Talbot and Willis (1985) to include gradient effects. The
inequality in (4.8) holds for any fields {(x) and x(x). Note that the dual potential
V(¢, x) specialized to a N-phase composite (4.1) is of similar form

VErx) = 3 VO 0% @9)

with V' related to ¢ as in (4.4).
For a linear composite ¢ having the form (3.19) the function V' ({, k) is easily
found explicitly from the definition (4.4)

VO, x) =30 (MO —=My) '{+5x (MO — M) "k (4.10)
provided
M®” >M, and A4V > .M,. 4.11)

The inequalities in (4.11) are interpreted in the sense of positive definiteness, 1.€.
6 (M?—-M%¢ >0 and t* (A —.# )t > 0 for any nonvanishing ¢ and . When
(4.11) is violated V({, k) = + oo which makes the lower bound in (4.8) trivial.

Note in conclusion that for (¢ (e, 1) — ¢o(6, 7)) strictly convex, (such as for linear
composites with a comparison medium satisfying (4.11)) the relation (4.8) holds
equality if

0,
Cij(x) = Bij(x) - ai)”(a(x), 7(x)),
0,
Kijk(x) = Wijk(x) - 6f-k(a(x)’ 7(x)),

by evaluation of the supremum of (4.4). By choosing ¢, to have the form of (4.7) the
above relations specialize to

{=e—Myo, kK=n—M, (4.12)

which establishes the connection with the standard definition of polarization.
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4.3. Hashin—Shtrikman lower bounds

If the ““true” polarizations (4.12) were known, their substitution into the right hand
side of (4.8) would provide the exact value of the complementary energy ®(a).
However, the polarizations depend on all the details of the microstructure which are
unknown precisely, though some partial statistical information may be available. By
substituting relatively simple “‘trial” polarizations into the variational principle (4.8),
employing available statistical information and performing an optimization, bounds
for @ are sought instead. These bounds are expected to reflect dispersion in the
parameters of the overall behaviour due to remaining uncertainty in the details of the
microstructure.

We specialize to linear composites, and choose the trial polarizations to be constant
within each phase

{(x) = ; LSO, K(x) = Zl K SO (). (4.13)

Let ¢, = |V]7' |, f©(x)dx be the volume fraction of each phase, r =1,2,...,N.
Consequently

t=Yct, R=Dex,

are the mean values of the polarization field (4.13). The ‘“‘true” higher-order
polarization x(x) satisfying (4.12) has zero mean value because no macroscopic
higher stress and strain gradient are generated by the boundary conditions (4.2)
in a statistically uniform composite. Likewise, upon making the approximation
(4.13) one can expect that the mean value & should be zero, which is
enforced henceforth.

To proceed, we substitute (4.9) and (4.10) into (4.8). The terms containing the
operators AV are simplified considerably by assuming that the constituent phases are
arranged in a statistically uniform and isotropic fashion. Note first that (4.8) can be

replaced by
d(3) >§6-MO&IV|+J [6:0—5C-D-A"C-D)

D) AT (e R) — S R) - AP (€ D) — e~ R) - AT e ) —
L (M=My) (=t (M~ ) ], (4.14)

where { is replaced by ({ —) due to the properties of the operators A” (see Appendix
A):

J(CA”Z+KA2‘Z) =j FA"C+A"2K) = 0. (4.15)

Recall that & is taken to be zero and (k— &) has been introduced in (4.14) instead of
k for convenience. Making use of (4.13), the bounds (4.14) are transformed into
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—®@E) =35 Myag—aC—3 Y. Y {{ B+, B+, BIYE,

) - N
+Kr : B(Zri)xs} —% Z Cr{Cr .(M(r) ~M0)7 ICr +K’r .('ﬂ(’) _'ﬂO)_ ! Kr}a (416)
r=1
where

1 y
B = MJ dle dxA(X, x) (fO(X) —e)(fOX) =) dx, i j=1,2.
Vv Vv

@.17)

The polycrystal’s size is much larger than the scale of the microstructure specified by
the characteristic functions f® and, due to statistical uniformity [/ (x") —¢,] in (4.17)
rapidly oscillate about zero throughout the volume V. Following Willis (e.g. 1981)
this permits us to implement an ensemble averaging in (4.17), and to replace AY(x’, x)
by its infinite-body form A”»® (x”— x) which is translationary invariant. As a result,

B ~ szA"’"“’ @ W,s(2) —c.c] (4.18)

with the integration performed over the infinite body. Here the (two-point) correlation
function y,, is defined as an expectation value (local average) of f(x) f(x+z) for
any point x within the composite. Due to the statistical uniformity it may be alter-
natively introduced as a volume average

1

bel@) = 57

J fOx) f9Y(x+z)dx.

The right hand side of (4.16) represents an algebraic quadratic form with respect to
Ciy. o Eys Ky, . . ., K. It is maximized by making its value stationary. For composites
with isotropic microstructure ,, depend only on the modulus of z. Then,
B{9 = B{Y = 0 from (4.18) since A'** and A*"* are odd functions of x (Appendix
A). Consequently, the optimization problems uncouple for {,, r = 1,2,..., N and for
K, r=1,2,...,N. The parameters x, appear only as a pure quadratic form without
linear terms involved. Their optimal choice is trivial: x, =0, r=1,..., N.

To optimize (4.16) with respect to {{,} the correlation functions y,, must first be
specialized to the ‘“cell” structure of the polycrystal. The polycrystal is regarded as
consisting of many single grains with each grain adopting one of N orientations with
probabilities ¢,, r = 1,2,..., N. Assume that the orientation of different grains is
totally uncorrelated, and introduce a “single grain” correlation function h(z), as the
probability that both x and x + z belong to the same grain. Then it follows immediately
that

l/’rs(z) = Crérsh(z) + crcs(l —]’l(Z))
(see, e.g. Talbot and Willis, 1982), and therefore
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BZSI 1 = (Crérs - crcs)Q7

where
Q= jA‘ Lo (x)h(x) dx. (4.19)

The remaining optimization with respect to {{,} is straightforward. Algebraically, it
is equivalent to that in the conventional case (see, e.g. Willis, 1981) and the resulting
optimal value for the right hand side of (4.16) is

() > 35 Myisa, (4.20)
where
N R -1 .
My = ( Z c,[M(’) +M]"> —M, 4.21)
r=1
and
M=Q '—M,. (4.22)

Note that the expression for the lower bound (4.21) formally coincides with that in
the conventional case (compare, €.g. to Willis, 1981 ; deBotton and Ponte Castafieda,
1995). The only but essential difference is in the tensor Q which is derived from the
strain gradient Green’s function corresponding to (M,, .#,) (see Appendix A), in
contrast to the ‘“‘conventional” tensor Q related to the Eshelby tensor and derived
from a conventional Green’s function (Willis, 1981).

We remind the reader that (4.20) and (4.21) represent a lower bound for any chosen
comparison medium with compliance moduli (M,,.#,) such that the restrictions
(4.11) hold for all orientations r = 1,2, ..., N.

4.4. Hashin—Shtrikman upper bounds

The upper bounds for the effective compliance are derived following the same
strategy with some obvious changes. To this end the dual function V', ({, k) is intro-
duced as

Vo(@x) = inf{o-{+7k—(0,7) + 00 (6,7)}

(compare with (4.4)). If both ¢ and ¢, are potentials for the linear media, V is still
determined by (4.10) in each phase r provided, however,

M® <M, and 49 <., (4.23)

for all r. If (4.23) is violated then V', = — oco0. Following the same prescription as for
the lower bounds with obvious alterations we end up with the upper.bounds for @
analogous to (4.21)
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- 1 -
O(5) <36 Mi;sa,

where

N

My = (Z c,[M® +M]-1>—M (4.24)
r=1

with M related to the tensor Q as in (4.22). We emphasize that, although the right

hand sides of (4.21) and (4.24) formally coincide, the bounds hold subject to opposite
restrictions (4.11) and (4.23) for the comparison medium (M, .#,).

5. EXAMPLE: ISOTROPIC F.C.C. LINEAR POLYCRYSTAL

5.1. Bounds for the effective shear modulus

The general formulae (4.21) and (4.24) for the lower and upper bounds are now
specialized to linear isotropic polycrystals. Note first that the bounds (4.21) and (4.24)
hold also in the continuum limit when the number of orientations N tends to infinity.
In this case the orientations r are identified with the rotation tensor , M is replaced
by M(€2), and the summation over r is replaced by an integration averaging over £,
where Q are all possible rotation matrices. Assuming there is no texture, i.e. all
orientations are equally likely, the continuous analogues of (4.21) and (4.24) are

Mjis = (M) +M] ')~ =M, (5.1

where (+) is the average over all orientations € of the crystal. For the linear poly-
crystal a “rotated” compliance tensor M(Q) is related to a reference tensor M® via

M, () = Q4. Q,Q, Qy, M. (5.2)

‘pr S Sgs

The bounds hold for M derived from any M° and .#° such that

M’ < MQ), #° < .H(Q) . (5.3)
for all Q for the lower bound, and,

M’ >M(Q), A°=.#(Q) (54)
for the upper bound. The tensor .# () is determined similarly from the reference
tensor 4R

M pgr () = QQ,, 0, R, Q QMR i

ps = Sqt

Because of rotation symmetry the optimal (M°,.#°) satisfying (5.3) or (5.4) are
isotropic. This implies that the tensor Q related to the infinite body Green’s function
G° of this medium via (4.19) and (B.15) is also isotropic. Isotropy also follows (for
untextured polycrystals) for the tensors Myg and My defined by (5.1) and (4.22),
and for the effective compliance modulus M* defined via

®@3) =55 -M*a|V|.
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For incompressible polycrystals associated with the multislip deformation discussed
in Section 3 the isotropic tensor M* is fully specified by the shear modulus p*

1
6 -M*G = FO’ G
provided & is “deviatoric”, i.e. &, = 0. It follows that

1
AMY,

* = _(Mljlj) P=

Similarly, the tensors Mjfs and My are specified by the shear moduli ugs and pyfs,
respectively

pis = [4(Miis)1212] L Pits = [4(MHS)1212]

Note that ugs provides a lower bound for the effective shear modulus p* in contrast
to Mjis associated with it, which provides the upper bound for the total compliance
tensor ; the same comment applies to s and Mgs.

As shown in Appendix B the shear part puy = Qi21, 0f the tensor Q is related to the
shear modulus y, =(4M?,,,)~" identifying M°, and to the lengthscales /,, , and /;
identifying .#, via

to = po(1 =y (lo)), (5.5)

where
Iy 52(% f+§l§ +§l§)”2.

The function (/) is related to the grain-size correlation function 4 via (B.19).

Specialize now to a face-centred cubic (f.c.c.) linear polycrystal. The reference
single crystal has twelve slip systems defined by four slip planes of the {1, 1,1} type
and by three slip directions for each plane of the {1,1,0} type. This defines the basic
triads (s, m®, t®) foreach o = 1,2,..., 12 and determines the reference compliances
M and .# via (3.20), (3.21) once the parameters Uy 12152 and I have been specified.
The crystal is expected to display cubic symmetry which implies that the above single
slip parameters are actually independent of « (i.e. u, = p; [ = I, etc).

It is well known that a cubic compliance tensor M which is also incompressible is
fully characterized by two quantities v/ =(M,,;;,— M,5,)/2 and v’ = M,,,,, see, e.8.
Walpole (1981). The parameters v’ and v” are explicitly found from (3.20):

1 1
= vV = —.

I 3u
To find expressions for ugs and pyis from (5.1), well known rules of algebraic manipu-
lations with cubic tensors M = (2v’,2v") have been employed (see, e.g. Walpole,
1981): if M, =(2v},2v]) and Mz (2v5, 2v5) then (M, + M,) = (2v] +2v5, 2v] +2v;
MM, = (4v| v, 4v{vy) and M[! —((2v1)‘1 (2v{)~"). For isotropic tensors v’ = v" ;
a simple relation for the shear modulus v' associated w1th the “isotropic average”
(M) =(2v', 2v") of the cubic tensor M is
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V= My = g
This folloWs' ffom
V= 1]_0<M>ijij = %(j(Mijij>
and the fact that the invariant M,;; is itself rotation invariant and therefore needs no
rotational averaging.

One immediate implication of cubic symmetry is that for the optimal choice of the
comparison medium

1 M { /7 H} 1 (5 6)
— =min {V,V"} = — .
4o 3u

for the restrictions (4.11) corresponding to the lower bound, and

1

1
— =max {V,v'} =— (5.7)
4o 1

for the upper bound conforming to (4.23).

Expressions for uys and pifs follow now from (5.1) and (5.5) by implementing
together all the above properties. The result is

pis < p¥ < s,
3— 4 5.8
)
6
(1 57)
8 + o B
vt =ydt) = SJ e 2h(I* e ds,

0

+
Hpgs =

A=

1+

_ _H
=" 5.9
Hns =4 5 (5.9)

where

W =y(lo) = %JM e~ 2h(I* )z dt. (5.10)

0

Note that the grain size effect for u* is expressed in the above relations via the grain
size correlation function /4(|z|).

The lengthscales /" and /~ are found from optimal choice of the Toupin—Mindlin
isotropic strain gradient comparison medium (see Appendix B) to satisfy the second
restrictions of (4.11) and (4.23), respectively.

5.2. Numerical implementation and results

The formulae (5.8)—(5.10) have been employed for calculation of bound for the
effective shear modulus of an f.c.c. strain-gradient composite for various combinations
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of the single slip lengthscales /g, /,, and /. As a simple illustrative example the grain
size correlation function was taken as

h(|z]) = e~ ", (5.11)

where a is a correlation length parameter which can be interpreted loosely as a
“typical” grain size. In this case the integrals in (5.10) are easily found

TG
) =g(a+z> .

Observe that in the limit / <« ay* = 2/5, and (5.8) and (5.9) conform to the “‘con-
ventional”” Hashin—Shtrikman (1962b) values

Hps = i_l#, Piis = g#-
The optimal value /™ is found by minimizing the value of
lo(lh, 1, 13) = 2G50 +35+313)'7, (5.12)

as defined in (B.13), over all possible lengthscales (/;, [, /;). The minimization of /, is
constrained by values for (/,, ,, ;) such that the second of inequalities (4.11) holds

T Mt < T M7 (5.13)
for any incompressible 7. The isotropic incompressible tensor .#, is associated with
(lla 12) 13) Via

T Myt =

7@ g® (5.14)

I’l'() l% )u() l% IuO l%
where 7 = 1V +1? +1® is the decomposition of the incompressible tensor t;; into
three orthogonal invariant subspaces (Appendix B). Recall that y, is the shear modu-
lus and its optimal choice is given by (5.6).

Similarly, /* is sought to maximize /,(/,, ,, ;) subject to the opposite restriction

T Mgt =T M (5.15)

for any incompressible . The shear modulus y, is now given by (5.7).

For given single crystal lengthscales I, /,, and /; the optimal values /™ and /™
have been computed numerically using NAG minimization routines. The numerical
strategy was to minimize (or maximize) the right hand side of (5.12) with respect to
such /,, [, and /; that the constraint (5.13) (or (5.15)) is met.

The physically important case is [/ — 0 which reflects the absence of the dislocation
storage due to the slip gradient in the normal direction m®, see Fleck et al. (1994).
In this case the second term in the right hand side of (3.21) results in infinitely large
contributions unless

TYOM =0, «=1,2,...,12. (5.16)

In the limit (5.16) imposes a family of constraints for the higher order stress tensor 7.

1 The NAG Fortran Library Manual, Mark 14. The Numerical Algorithms Group Limited, 1990.
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Then, the upper bound for the effective shear modulus is found by performing the
above optimization strategy subject to these additional constraints. The lower bound,
however, degenerates into the conventional Hashin—Shtrikman value ugs/u = 21/44
uniformly with respect to /s and /7. This follows from the observation that if (5.15)
holds and /; in (3.21) tends to zero, then necessarily /, -0, , -0 and /; —» 0 and
therefore /= — 0 from (5.12).

Figure 1 shows results of sample calculations of the upper and lower bounds for
various values of [, /,, and /. The solid curves correspond to /s = /= [,, = I. The
results of calculations demonstrate strengthening of the polycrystal with diminishing
grain size a. For the polycrystals with coarse grains (a > 1) our results reproduce the
Hashin—Shtrikman (1962b) bounds for “conventional’ polycrystals. In the opposite
limit of large //a both the upper and the lower(!) bounds approach the Voigt uniform
strain upper bound uy{ = 0.55 (the upper margin of the figure). This is consistent with
the expectation that the displacement field of the polycrystal tends to the uniform
strain pattern (which contains no gradients), when the strain gradient terms dominate
in the energy functional. For both the upper and lower bounds the optimal values of
[;, I, and /; have been numerically found to be

L/l=14142, [,/I=0.7072 and [/l = 0.8660,

with the “effective” lengthscale [* = [(/,, ,, [5) = 21.

The dashed curves correspond to the case when /s = [ = /, but /,;, —» 0. The (con-
strained) optimization for the upper bound gave the following values of the optimal
comparison lengthscales

054 ZEE

053 8
(02,0,1"

x 052 (0,0,1)*

F|E

0.51

0.5

1,1,1)°
0.49
(1.0.1); (1,0,0)7 etc

0.48 !/ .

0.47 | | | | | | | I
0

(Lia )1/2

Fig. 1. Effect of the grain size @ upon the Hashin—Strikman upper and lower bounds for a linear f.c.c.

polycrystal for various lengthscales /g, /,, and I, scaled against a “normalizing” lengthscale /. The notation

(/L L)L I/D)* is used for the upper bound, and (/s/], /1, /)~ for the lower bound. The grain size
correlation function is taken as in (5.11).
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L/l=1.4142, [,/1=0.5345 and [/l =0.5774,

and the “effective” lengthscale /*// = 1.7457. The lower bound is a horizontal line
Hus = %/1 = 0.4773u as [~ — 0 when [, — 0. It is well above the “‘elementary” Reuss
bound uz = 0.4167u (not displayed).

The dotted curve displays the upper bound for the case /s =/, [, » 0 and /;— 0.
Physically, this corresponds to accumulation of geometrically necessary edge dis-
locations only, and, mathematically, results in constraints

YO =0, a=1,2,...,12 (5.17)

in addition to (5.16). Direct analysis shows that these constraints make 7 fully
symmetric, i.e. 7 = 7", and so 1@ = 1® = 0. Therefore, to satisfy (5.13) /, and / can
be chosen arbitrarily. The remaining lengthscale /; is found numerically to satisfy
L= \/E to ensure (5.13). Therefore, the choice of /;, [, and /; to deliver the minimum
to (5.12) is [, = 1.41421, I, — 0, [; - 0 which results in /*/] = 1.4606. The lower bound
coincides with the horizontal dotted line at the “conventional” Hashin—Shtrikman
value pgs/u = 21/44, and displays no scale effect.

Finally consider the limiting case /, = [, [,, > 0 and /g — 0. This corresponds to a
hardening contribution by geometrically necessary screw dislocations only. In this
case the constraints ¢ ™5 =0, « = 1,2,..., 12 in combination with (5.16) cover the
full 15-dimensional linear space of incompressible higher-order stresses . The result-
ing optimization procedure degenerates and /* = 0 which corresponds to /; - 0, /, —»
0, ;- 0. This results in the uniform upper bound displayed by the dash—dotted
horizontal line.

The bold—dotted curve displays the upper bound for an “intermediate” case
=02l I,=1, I,,~0. The optimal lengthscales were found to be /,// = 0.3746,
L/1=0.3299, I/l = 0.1732, and, as a result, /*/] = 0.5855.

Comparison of results of calculations demonstrates that for f.c.c. polycrystals the
lengthscale /s (edge dislocations) have a major impact on the scale effect for the upper
bound, whereas variations of the other lengthscale /; (screw dislocations) have a less
pronouncing effect.

Note that the Fig. 1 is in qualitative agreement with the Hall-Petch relations : u* ~
u¥+c(l/a)'’? for some constant c¢. One can see that the behaviour is indeed close to
linear for, approximately, 0.2 < (//a)'? < 1. We emphasise that the Hall-Petch effect
relates to the dependence of yield strength of polycrystal upon grain size, and so the
results presented here for the dependence of the macroscopic shear modulus upon
grain size are meant only for a qualitative comparison. Further, the analysis of the
linear case is the first step in the estimation of the grain size effect for non-linear
polycrystals : in order to use the non-linear variational principle of Ponte Castafieda
(1991, 1992) the effective properties of the linear solid are required.

6. CONCLUDING DISCUSSION

We regard this paper as a first step towards quantitative modelling of the scale
effect in the plastic behaviour of polycrystals (the Hall-Petch effect). For.this purpose,
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a study of the linear polycrystals is the first and critical step. The instantaneous
linearity of a nonlinear crystal permits us to implement ideas of Ponte Castafieda
(1991, 1992) and deBotton and Ponte Castafieda (1995) to nonlinear polycrystals
with strain:gradient effects. As an alternative, the Hashin—Shtrikman variational
principle formulated in Section 4 in a more general “nonlinear”” form permits us to
pursue the strategy of Willis and co-workers (Willis, 1983, 1991 ; Dendievel e al.,
1991) to derive bounds for nonlinear polycrystals with strain-gradient effects directly.
The avenues for implementation of these homogenization techniques are open as soon
as the appropriate coupling between the slip and the slip gradients for the reference
single crystal has been selected. This has to be done experimentally, or through explicit
modelling dislocation—dislocation interactions.
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APPENDIX A

We start by seeking the infimum of the right hand side of (4.6) and (4.7) with respect to the
class of statically admissible (a(x), t(x)) compatible with (4.2). We follow here the strategy of
Willis (e.g. 1981). To this end consider the variation of

I(a,7) :J [6'C+T'K+%G‘M06+%T‘ﬂo’r] dx,
|4
which is
6l(e,7) = J [(My6+8) 00+ (M T +K) dt] dx
|4

by using the symmetry of M, and .#,. Both M, and .#, are assumed to be positive definite, i.e.
6*Myo > 0, t* 4yt > 0 for any nonvanishing ¢ and . Therefore, a stationary value of /is also
a minimum. To ensure that 7 = 0 it is sufficient to find a displacement field u(x) such that

M06+C =&
Mot+K =1, (A.1)

where ¢ and # are the strain and the strain gradient kinematically derived from u. This follows
from the stationary principle (2.11).
Relations (A.1) can be re-expressed as

o =Le—Ly(,
T = goﬂ“ggk, Wy (A2)
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where L, = My' and & = .#, ' are the “stiffness” tensors. By substituting (A.2) into the
equilibrium relation (2.4) we achieve the governing partial differential equation for u(x), given
by :

T Ll[c)quup,jq (X) - "g?jkpqrur,[)qij(x) +.ﬁc (X) = 0’ (A3)
Here
S = _LI(C)JMCMJ(X) +Z ?jkpqr'cpqnij (A.4)

may be interpreted as a body force which would cause the same displacement field within V if
the composite solid were replaced by the homogeneous linear comparison medium with par-
ameters M, and .#,,.

We seek the solution of the displacement equation of equilibrium (A.3) such that (e, 7)
satisfies the boundary conditions (4.2). The total displacement field u(x) is obtained as the sum
of the solutions to two problems:

(i) the solution ii(x) of (A.2) due to the body force f, given by (A.3) but with vanishing
tractions on the boundary S, and

(i) the solution @(x) of (A.2) due to the surface tractions (4.2) but with vanishing body
force f,.

To obtain the solution @(x) of (A.2) introduce the Green’s function Gy (x,x") in V,
L;c)quGlp,jq (X) - g?jkpquIr,pqij(x) + 6Ik5(x - X/) = 0:
with “traction free” boundary conditions on .S
tk = O, Rk = 07

where 7, and R, are defined by (2.8) and (2.9). Then by comparison of the above governing
equations for G, (x,x") with (A.1) we obtain

= J G (x,Xx) f,(x") dx’.
Vv
The total displacement field is

Uy = 1,00+ J G, X) fi(x) dX', (A.5)

v

where & = M,y& and ii(x) is the related linear displacement field.
It follows from (A.2), (A.5) and (A.4) that

6=8—A"—Ax,
1= ~A*"{— A",
where the operators AY can be given explicitly in terms of the Green’s function, for example

G,
0x,0x;

(A"'0); = (Lol)y— Lijs, J (%, X) Loyler(x') A (A-6)

The relations (4.15) follow from the stationarity principle (2.11) applied to
& = —A“C’—AIZK, T = _A21c_A22'c
and ¢ =, n = 0, and the reciprocity property of the operators A”:

j & “AM'E, =J gz'A“Cn J C'Alz":f Kk-A'{
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for arbitrary ¢, «, {,, {,. The latter can be checked directly by expressing A” in terms of G, and
using the symmetry properties of L° and #°.

To prove that BYY and BYY defined by (4.17) vanish for isotropic ,,(z) observe that
G*(—1z) = G*(z) for the infinite body Green’s function and, therefore,

Alz,oo(_z) — _AIZ,OO(Z)’ A21,oo(__z) — —Az"‘”(z)

since they are determined by third order derivatives of G*.

APPENDIX B: LINEAR ISOTROPIC STRAIN GRADIENT MEDIUM

The “gradient” part of the strain energy of a linear isotropic solid due to an arbitrary strain
gradient # can be written as

%’l * LN = a\ N+ QM+ A3 it + Qafiaig + s Ml (B.1)

(see, e.g. Mindlin, 1964, 1965). Recall that #,; = u, ; is the tensor of the second-order gradient
of displacement and is symmetric in its first two indices. In (B.1) the coefficients (@, a,, .. ., as)
are arbitrary real numbers which should satisfy certain restrictions to ensure positive defi-
niteness of .Z.

Since the linear operators introduced via (3.21) are incompressible, it is sufficient for our
purposes to consider a general form for the isotropic incompressible comparison medium. If
the displacement field u is incompressible then #,; = 0 for k = 1,2, 3, and to enforce this one
can consider the limit a, = 00, as — c0. As a result the last two terms in (B.1) vanish and

%'I “ LN = ai i+ QM+ @Mt (B.2)

where the tensor # is constrained : #,; = 0 for k = 1,2, 3.

The representation (B.2) indicates that the family of isotropic incompressible operators is
three-dimensional, i.e. any such operator .#° can be decomposed into a linear combination of
“canonic” isotropic incompressible operators £V, @ and £®

go = b|$(1)+b2$(2)+b3$(3).

The canonic operators £ are sought to be projectorst to mutually orthogonal subspaces of
the 15-dimensional linear space of incompressible tensors #. To this end, we develop here some
ideas of Mindlin (1964, 1965) by decomposing first the strain gradient tensor n into the
symmetric part and the rotation gradient part.

The symmetric part of 7 is

M = %(nijk + i+ i) = %(uk,ij oy e+ ), (B.3)

i.e. n° is symmetric with respect to any permutation of the indices. An arbitrary strain gradient
tensor # therefore can be decomposed into its symmetric and “‘antisymmetric’ parts

n=n+n" (B.4)

The antisymmetric part is specified by the curvature tensor y (see, e.g. Mindlin, 1964). Indeed,
Nix = %(uk,i —Uig);+ %(uk,j —Ujg)

= %ei’cpxm' + %ejkqxqb (B.5)

where

T This is analogous to decomposition of an isotropic operator into its bulk and shear parts in “con-
ventional” elasticity theory. o

tou
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=0 =1 =1
xij = VYij; — 2eiqrur,jq - Zeiqr”jqr

is the curvature tensor and 6, = %e,-k,u,,k is the rotation vector. Note that for any  (B.4) is an
orthogonal decomposition, i.e. #{znix = 0.

Further decemposition of 5 is done splitting the curvature tensor y into its symmetric and
antisymmetric parts

=1 X =50 n)s X =500 — 1) (B.6)

and by substituting (B.6) into (B.5). As a result the tensor »° splits into two parts #* and #* as
follows

nt =n"+n, (B.7)
as — 2 2
Mg = geikpX;j‘*‘ge;kpX;i
1
= 2 (Cap@iimMipm + €jicpCitmMipm + 2Mijte — Mjki — Micij) >
aa — 2 a 2 a
Wik = 3€ikpXpi 35 Ckp Xpi
1
= g(_ CispCjimMipm — €cpCitmMipm + 20— N — Miz) -
To summarize, we decompose an arbitrary 5 into the three components
” — ”s+"as+”aa.

These components are mutually orthogonal. For example, for any # and #

emas _ 2.5 =5 2 s S
e = MixCikpXpi + i€y Xpi
is zero because, e.g. #j; is symmetric in (ik) but ey, is antisymmetric. Similarly, #°-#* = 0.

Finally,

as

e = g(eikpX;j + ejquZi) (eierfj + ejkxX?f)
4 5 a 5 a
= 5(6ijij“‘27&'in1) =0.

Specialize now to the incompressible case, i.e. to such y that ,; = 0, k = 1,2, 3. Observe first
that n;;, as defined by (B.3) does not fall algebraically into the class of incompressible tensors,
i.e. nj; may not be zero even though #,; = 0. To maintain incompressibility we subtract from
n’ its “hydrostatic symmetric” part and introduce

nt(jlk) = r’fjk - é(éijr’lipp + 5jkr’fpp + 5k1njpp) s

which is both symmetric and ““incompressible”.
Introduce next the tensor #® = * as defined by (B.7). It is incompressible and needs no
modification as above. Indeed,

as 2 s 2 s
iy = 3€kipXpi T 3€5gXqk = 0.
Finally, let
'751313 = Wi — nglk) - ”I:(jz) =g+ %(5ijnipp + 5jk"li'"pp + 5ki'l§pp),

which is incompressible by construction.
The resulting new decomposition

n= "(1) _+_,’(2) +"(3)

maintains incompressibility and is still orthogonal. The latter may be checked directly, e.g.
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1 GO = q DG 40 (Gyeny + O il + Otalipy) = O

due to incompressibility of %V, i.e. n% =% =ni) =0,k =1,2,3.
The above considerations imply that three isotropic operators £, @ and ¥ can be
introduced such that for any 5

70 = POy 4@ = PO g = POy

The operators #Y, j = 1,2, 3 are in fact projectors to mutually orthogonal subspaces of the
linear space of the isotropic incompressible tensors . From dimensional considerations an
arbitrary isotropic incompressible operator #° of form (B.2) must be of the form

P’ =b, LV 45, LY +b; LY,
where (b,, b,, b;) are linearly related to (a,, a,, a;). The corresponding energy functional is
%,' .go,' — %bﬂl(l) . ,'(l) +%b2,’(2) . ,,(2) +%b3t](3) . ,’(3) (B.8)
since
1LV =040 =@ + 4@ +4P) - g® = y® - y®

for example.

The resulting “canonical” representation (B.8) gives a general form of the strain-gradient
energy functional. It provides a particularly simple condition of positive definiteness of #°:
this holds if and only if b, > 0, b, > 0 and b; > 0. One can write b; = pl}, j = 1,2,3 where
to =(4M$,,,)"" is the “conventional” shear modulus, and /, > 0 have dimensions of length.
Another advantage of the canonic form (B.8) is that the operator #° can be easily inverted
since it acts as a simple multiplication by b, in corresponding subspace : if .#° =(£°)~' then

! z-(Z) +
Hol1 Mol % Hol %
Here, similarly to 5, ©® denote projections of T on the jth subspace (j = 1,2, or 3): t¥ = ¥9z
with all the above algebraic representations applied by simple replacement of # by 7. In
particular, the energy may be re-written as

‘L'(3).

by PO =ttt = MOMS I 1@ e g® ) g,

2uel} 2p0l3 2uol5
Note that

t=bn" +b,9® + by (B.9)

defines the deviatoric part of the higher-order stress analogously to ¢ = 2u.¢ identifying the
deviatoric part of the conventional stress.

Consider now the Green’s function corresponding to a linear incompressible comparison
medium with tensors (M°, .#°) characterized by the parameters p,, /;, [, and /; as discussed
above. Note first that due to incompressibility the deviatoric parts 6 = L% and 1 = £ satisfy
the equilibrium equation (2.4) in a corrected form

O, — Tk Hi = 0 (B.10)

with some scalar field H(x) accounting for the hydrostatic components of the stresses. To
obtain the equilibrium equation in displacement form substitute 6, = 2uees = po(14;4+ 4 ;) and
(B.9) into (B.10) using the explicit formulae for 7V, #®, ® and employing the incompressibility
of displacement, i.e. u;; = 0, u; ; = 0. As a result,

HoAuy — pio (13 +313 +213)A*uy + H, = 0, (B.11)
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where A is the Laplacian operator. The infinite body Green’s functions G satisfies (B.11) with
a point load -

e 1o AGE — o [EA’ G + H o +6,6(x) = 0, (B.12)
where
ly = 26213 +33 +213) 2. (B.13)

The equation (B.12) formally coincides with that emerging in a reduced couple stress theory
(Smyshlyaev and Fleck, 1994 ; Appendices A and B), and its solution is given by

- ! 2e-x|
Gy =g jla:l(a,-,-—é,-f» exp{— 3 }dS@). (B.149)

To obtain the shear part p, of tensor Q defined by (4.19) note first that in the case of the
infinite body (A.6) defines A'"* as a translationary invariant operator with kernel

wi® = Lyd(X)+ L), G 1 (X) L. (B.15)
Relation (4.19) then reads
Q =L°-L’S*L?, (B.16)
where
= jGi/,kj(x)|(i,),(k/)h(lxl) dx (B.17)

and (ij) denotes symmetrization with respect to the relevant indices.
As all the tensors involved are isotropic, (B.16) leads to the following expression for

Ho = O

to = Mo — 4o pis, (B.18)
where pg = S5, is the shear part of the tensor S*. The shear modulus yg is found from (B.17)
and (B.14) to be (see Smyshlyaev and Fleck, 1994, Appendix B)

1
Us = %‘l’(lo)a

where

y(l) = §j+we2’h(h)tdz. (B.19)

Thus, pi, assumes the form

to = po(1=¥(L))- (B.20)



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

