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I. Introduction

Compression failure is a design-limiting feature of aligned, continuous
fiber composite materials. For example, the compressive strengths of
unidirectional carbon fiber-epoxy laminates are often less than 60% of
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their tensile strengths. A number of competing failure modes result in
compressive failure: the operative mode is particularly sensitive to the
shear properties of the matrix and to the degree of imperfection of the
composite (typically, fiber waviness). For example, polymer matrix and
carbon matrix composites have low shear strengths and failure is usually
localized compressive buckling of the fibers in a cooperative manner. We
shall refer to this failure process by the term microbuckling; this is the
main topic of the current article.

The broad outline of this review is as follows: In Section II, the main
mechanisms of compressive failure of composites are summarized, and
operative mechanisms for various classes of material are displayed in the
form of failure maps. In Section III, recent results are summarized for the
initiation of microbuckling in unidirectional composites. The propagation
of a microbuckle is addressed for unidirectional composites in Section IV
and for multi-directional notched laminates in Section V. The article
concludes with some suggestions for future research.

II. Competing Failure Mechanisms in Composites

Long fiber composites are usually designed to possess a high-axial
stiffness and strength. Accordingly, the fibers are made from a strong and
stiff material such as graphite or silica glass; the matrix has a much higher
toughness and lower strength than the fibers in order to endow the
composite with adequate in-plane strength and ductility. The axial com-
pressive strength of the composite is usually relatively low, as most of the
individual mechanisms of compressive failure are dictated by matrix prop-
erties. The main competing mechanisms of compressive failure are sketched
in Figure 1 and may be listed as:

(A) Elastic microbuckling. This is a shear buckling instability and the
matrix deforms in simple shear;

(B) Plastic microbuckling. Again, this is a shear instability, which occurs
at sufficiently large strains for the matrix to deform in a non-linear
manner;

(C) Fiber crushing. Failure occurs at the fiber level of scale due to a-
shear instability such as buckling within the fiber. It is often
associated with the fact that the fibers themselves are microcompos-
ites comprising wavy fibers embedded in a soft matrix;
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Fic. 1. The main competing failure modes of composites. (a) Elastic microbuckling, (b)

Plastic microbuckling, (c) Fiber crushing, (d) Splitting of the matrix, (¢) Buckle delamination
of a surface layer, (f) Shear band formation.
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(D) Splitting. The matrix cracks parallel to the main axial fiber direction.
It is associated with a low toughness of the matrix;

(E) Buckle delamination. This occurs by the buckling of a surface layer
from a sub-surface debond. It is observed in both ceramic matrix
and polymer matrix composites. Post-impact compressive strength is
often a concern in the use of composites, as the impact event leads
to a large debond. Subsequent compressive loading can induce
buckle-delamination growth. Buckle delamination is associated with
a low matrix toughness and the presence of a large subsurface flaw.

(F) Shear band formation. Matrix yield and fracture occur in a band,
oriented at about 45° with respect to the loading axis.

Each of the above mechanisms of compressive failure is now reviewed,
and practical examples are given of material systems which fail by
each mechanism.

A. ELASTIC MICROBUCKLING

Several attempts have been made to model microbuckling by assuming
elastic bending of the fibers and elastic shear of the matrix (Hahn and
Williams, 1986; Johnson and Ellen, 1974, 1975a,b, 1976). In general, they
add little to the pioneering analysis of Rosen (1965), who assumed that
elastic bifurcation occurs in two possible modes:

(i) a transverse buckling mode, whereby the matrix undergoes exten-
sional straining transverse to the fiber direction, and

(i) a shear buckling mode, where the matrix shears parallel to the fibers
(see Figure 1a).

In practical fiber composites, containing a significant fiber volume frac-
tion ¢ > 0.3, the shear mode gives lower failure loads. Rosen assumed that
the fibers are initially perfectly aligned and calculated the elastic bifurca-
tion load at which the fibers deflect into a sinusoidal shape. Rosen found
that the composite compressive strength o, due to shear buckling is

w2 (d\?
-G+ —|Z 2.1
0 =G 3(/\)E e

where G and E are the in-plane shear and axial moduli of the composite,
respectively, d is the fiber diameter, and A is the buckling wavelength.
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Note that the wavelength, A, is not specified by the analysis: the lowest
predicted strength is g, = G at A = . This corresponds to the case of
straight fibers which undergo a uniform rotation ¢. The term G on the
right-hand side of (2.1) is the contribution to the compressive strength
from matrix shear, and the remaining term
w2 (d ZE
3 1A
is the contribution to compressive strength associated with the finite-
bending resistance of the fibers. It is clear from Rosen’s analysis that the
lowest strength is obtained in the long-wavelength limit, wherein the role
of fiber bending is negligible. The same conclusion holds true in the more
typical case of a non-linear matrix response: we may neglect the role of

fiber bending in estimating the compressive strength. The kinking theory
outlined in subsequent sections makes this approximation.

1. Expernimental Support for Elastic Microbuckling

In order to test Rosen’s elastic microbuckling theory for the case where
the matrix behaves in a linear elastic manner, Jelf and Fleck (1992)
fabricated model composite materials made from baked wheat flour
(spaghetti) rods in a silicon elastomer matrix. Flat-plate specimens were
compressed in a direction parallel to the fiber direction, and held between
transparent anti-buckling guides to prevent out-of-plane Euler macrobuck-
ling. Compressive failure was by in-plane microbuckling with a wavelength
A equal to twice the specimen height 4. The compressive strength given by
(2.1) is in good agreement with the observed compressive strength, as
shown in Figure 2. As & increases, the compressive strength o, decreases
to the asymptotic value of G = 1.5 MPa, in support of (2.1). We conclude
that the Rosen theory is accurate when the matrix behaves in a linear
elastic manner.

More typically, polymer, ceramic, and metal matrices of long-fiber
composites display a non-linear behavior and the observed compressive
strengths of the composites are about o, = G/4, due to imperfection-
sensitive plastic microbuckling. The compressive strength is knocked down
by imperfections in the form of pre-existing fiber waviness. Early attempts
to fit the Rosen model to experimental data have involved empirical
correlation factors (Lager and June 1969): in effect, an empirical knock-
down factor was used for the shear modulus, G. |
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FiG. 2. Elastic microbuckling of a silicon rubber matrix reinforced with 31% volume
fraction of spaghetti fibers, of diameter 2 mm.

B. PLASTIC MICROBUCKLING

Evidence is accruing that the dominant mechanism of compressive
failure in polymer-matrix composites is plastic microbuckling: the compres-
sive strength is controlled by fiber misalignment together with plastic shear
deformation in the matrix (Argon, 1972; Budiansky and Fleck, 1993).
These composites possess a compressive strength of less than 60% of their
tensile strengths. The role played by plastic microbuckling in the compres-
sive failure of metal matrix and ceramic matrix composites is less clear,
though microbuckling has been observed in aluminum alloy matrix com-
posites (Schulte and Minoshima (1991)) and in carbon—carbon composites
(Evans and Adler, 1978). Plastic microbuckling is also an important failure
mechanism in woods (Grossman and Wold, 1971; Dinwoodie, 1981).

Argon (1972) and Budiansky (1983) identified the shear yield strength &
of the composite and the initial fiber misalignment angle ¢ of the fibers as
the main factors controlling compressive strength. In their analyses, the
bending resistance of the fibers is neglected and it is assumed that fibers
within a band of infinite length and finite width w suffer an initial uniform
misalignment ¢. The unit normal to the band of imperfection is rotated
through an angle B with respect to the fiber direction as shown in Fig-
ure 3. Argon (1972) considered kinking within a B8 = 0 band for a rigid-
perfectly plastic composite having yield stress 4 in longitudinal shear.
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Fic. 3. Plastic kinking of a band of width w, inclined at an angle B to the remote fiber

direction. Fibers within the band have an initial misalignment of ¢, and rotate through an
additional angle ¢ under the remote load.

He showed that an additional rotation ¢ cannot develop until the
critical compressive stress

k
g. = = (2.2)

¢
is applied. The compressive stress decreases with increasing ¢ in accor-
dance with o = k/(¢ + ¢).
The Argon formula (2.2) for the plastic kinking stress was extended by

Budiansky (1983) to an elastic-perfectly plastic composite, with yield strain
vy = k/G in longitudinal shear, for which the kinking stress is

k G
o, = = = = (2.3)
Yyt e 1+ /vy

This result (still for 8 = 0) is uniformly valid for all ¢, giving the long-
wavelength Rosen bifurcation stress o, = G for ¢ = 0, and is asymptoti-
cally equivalent to the Argon result (2.2) for large ¢.

Available experimental evidence for polymer matrix composites supports
the hypothesis that microbuckling is a plastic rather than an elastic event.
Test data from a variety of sources for the axial compressive strength o, of



50 N. A. Fleck

aligned-fiber polymer matrix composites are plotted against G in Figure 4.
The elastic kinking stress is given by the heavy line (corresponding to
é/vy = 0) and the other slanted straight lines are plots of (2.3) for several
values of ¢/yy > 0. The simplifying assumptions (e.g., 8 = 0, ideal plas-
ticity) used in the derivation of (2.3) limit its direct applicability; more
realistic analyses taking into account strain-hardening as well as 8 > 0,
will be made below. We note, nevertheless, that most of the data in Figure
4 fall well below the elastic buckling line, and are consistent with (2.3) for
a range of values of ¢/ vy near 4. If we set y, equal to some nominal
magnitude—say 1%—this gives values of ¢ scattered about a mean value
in the vicinity of 2°. As we shall see later, this rough estimate for typical
values of ¢ may change somewhat in the light of more refined calcula-
tions, but it is in good agreement with measured values of the misalign-
ment of fiber bundles when a laminate was sectioned and examined under
a light microscope by Yurgatis (1987). Yurgatis found that most of the
fibers in a carbon fiber-PEEK unidirectional composite were oriented
within +3° of the mean fiber direction, and the standard deviation of the
distribution was 1.9°.

Indirect evidence to support eq. (2.3) comes from compression tests on
woven carbon fiber cloth by Wilkinson ez al. (1986). They found that the
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FiG. 4. Compressive strength data and predictions of microbuckling strength, based on
Budiansky’s (1983) formula for elastic-perfectly plastic behavior. The data suggests ¢/yy = 4,
where ¢ is the fiber misalignment angle and vy is the shear yield strain of the composite.
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compressive strength of T300,/914 carbon-epoxy cloth (G = 6 GPa) de-
creased from about 1 GPa to 200 MPa when they inserted brass wires into
the cloth normal to the fiber direction in order to increase the waviness.
From these strength measurements the inferred value of ¢/ Yy Increases
from 5 to 29 via (2.3). With y, = 0.01 (0.57°) this corresponds to an
increase of ¢ from 3° to 17°. These theoretical values agree well with our
measurements of the maximum fiber bundle waviness from the micro-
graphs published by Wilkinson ez al. (1986), which show increases from
approximately 3° to approximately 20°. '

The compressive strength of composites shows a large degree of scatter,
with nominally identical specimens often varying in strength by 25%. This
is consistent with plastic microbuckling, for which the analytic prediction
(2.3) shows high imperfection sensitivity, with strength strongly dependent
on the misalignment angle. In contrast, the elastic microbuckling collapse
load is fairly insensitive to imperfections (Budiansky, 1979), and would not
show much scatter.

In an illuminating set of tests (Piggott and Harris, 1980; Piggott, 1981),
the modulus of a polyester resin matrix was varied by partial curing, and it
was found that the matrix yield strength varied proportionally. With
reinforcing fibers of either glass or Kevlar, and the fiber volume fraction
¢ = 0.31, a nominal, uniform value of y, = 0.024 (1.4°) for the composites
can be estimated from their data. Figure 5 shows the measured composite
strengths on a plot of o, versus G. Again, we infer a value ¢ = 2° for both
the glass and Kevlar fibers from the initial, nearly linear ranges of the
data, presumed to reflect plastic kinking. Above transitional values of the
composite stiffness G, the failure-stress levels, shown by the arrows in
Figure 5, become more-or-less independent of G (or of 7y = Gyy).
Piggott and Harris surmise that in this range, failure was due to fiber
crushing. This mechanism of compressive failure is outlined below.

Microbuckling in carbon—carbon composites has been observed by Evans
and Adler (1978), Chatterjee and McLaughlin (1979), and Gupta et al.
(1994). The latter found compressive strengths as low as 1/20 of the
elastic-kinking stress (2.1), and suggested plastic kinking as the operative
failure mechanism. The plasticity of the carbon matrix is probably due
primarily to microcracking. Similar non-linear stress-strain behavior due to
matrix microcracking and consequent kinking mechanisms might also be
expected in some ceramic-matrix composites. Although little experimental
evidence is available, Lankford (1989) did observe kinking in a pyroceramic
matrix reinforced with silicon carbide fibers. His measured compressive
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F1G. 5. Measured compressive strength of glass and Kevlar fiber reinforced, partially cured
resins. The arrows indicate presumed stress levels at the transition from microbuckling to
fiber crushing. Data taken from Piggott and Harris (1980) and Piggott (1981).

strengths of o, = 1500 MPa, and our roughly estimated values of 7, =
115 MPa and 7y, = 0.01, when substituted into the plastic kinking formula
(2.3), give ¢ = 4° for the fiber misalignment. Lankford (1989) also investi-
gated the effect of applied strain rate on compressive strength by perform-
ing tests using a split Hopkinson pressure bar. He found a significant
enhancement in microbuckling strength when the axial strain rate exceeds
about 10° s~': this strength evaluation is partly due to the micro-inertia of
rotating fibers within the microbuckle band, and partly due to the strain
rate sensitivity of matrix strength.

Compressive failure in metal-matrix fiber composites has received little
study, and the importance of kinking as a failure mode in such composites
has not been established. A preliminary study has been conducted by
Schulte and Minoshima (1991) on alumina fibers in an aluminium-2.5%
lithium matrix. They observed microbuckling at a compressive strength of
o. = 1500 MPa, compared to a tensile strength of o, = 600 MPa. A fiber’
misalignment angle of ¢ = 3.6° is inferred from (2.2) on assuming a shear
yield strength for the composite of k = 100 MPa; such a value for ¢

is plausible.
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There is accumulating evidence that the dominant mechanism of com-
pressive failure in polymer matrix woven composites is fiber microbuckling.
Microbuckles form at many of the cross-over points of neighboring tows
(Cox et al., 1994; Fleck et al., 1995a). A typical scanning electron micro-
graph of this distributed form of damage development is shown in Figure
6, for a two-dimensional +6 braid of glass fibers in an epoxy matrix (Harte
and Fleck, 1996).

C. FI1BER CRUSHING

When the matrix is sufficiently stiff and strong, alternative failure modes
such as fiber crushing intervene. Fiber crushing occurs when the uniaxial
strain in the composite equals the intrinsic crushing strain &, of the
fibers. A variety of mechanisms may be associated with fiber crushing. In
the case of steel fibers, local crushing is due to plastic yielding (Moncunill
de Ferran and Harris, 1970; Piggott and Wilde, 1980). Glass fibers tend to
fail in compression by longitudinal splitting. In the case of carbon, Kevlar,
and wood fibers, microscopic microbuckling or kinking occurs within each
fiber, and kink bands are observed within the fibers of width less than the
fiber radius (Greszczuk, 1972, 1975; Prandy and Hahn, 1990; Young and
Young, 1990; Piggott and Harris, 1980; Gibson and Ashby, 1988). Pitch-

Loading

'ff'.-i-:

of glass fibers in an epoxy matrix

Fic. ‘6. Microbuckling failure of a two-dimensional braid
(Harte and Fleck, 1996).



54 N. A. Fleck

based carbon fibers have a very well-aligned longitudinal microstructure,
and they fail in compression by a combination of internal buckling and
longitudinal splitting. Typical values of crushing strain are &, = 0.5% for
Kevlar and pitch-based carbon fibers, and & = 2.5% for PAN-based
carbon fibers. When microscopic microbuckling occurs, the compressive
strength of the fiber, oy, is of the order G /4, where G is the longitudinal
shear modulus of the fiber (deTeresa et al., 1988; Kumar et al., 1988). This
supports the hypothesis that buckling loads are knocked down by wavy
micro-fibrils within each fiber and the intervening matrix deforms non-
linearly in shear: plastic microbuckling occurs at the micro-fibril level.

The fiber-crushing strength for glass fibers and for Kevlar fibers may be
estimated from the compressive strength data of Piggott and Harris (1980)
in Figure 5. The average axial stress in the composite at which fiber
crushing occurs is given approximately by the rule-of mixtures formula,
Oprysn = [CE; + (1 — ¢)E, l¢;., where E; is the Young’s modulus of the
fibers and ¢ is the fiber volume fraction. In the Piggott-Harris tests,
E,/E; <1, and so the fiber crushing strength oy = E;&; can be esti-
mated as oy, = o./c from the upper-shelf values of o,. This gives fiber
crushing strengths of about 1.7 GPa and 0.4 GPa for the glass and Kevlar,
respectively; these values are plausible.

Early carbon fiber-epoxy matrix systems were manufactured from car-
bon fibers of low-crushing strength and epoxies of high-yield strength.
These materials failed by fiber crushing at test temperatures below approx-
imately 100°C (Ewins and Potter, 1980). At higher temperatures, the yield
strength of the early epoxies drops sufficiently for the failure mechanism
to switch to plastic microbuckling. More modern carbon fiber-epoxy sys-
tems possess carbon fibers of higher crushing strength, and a tougher,
lower-yield strength matrix. The transition temperature from fiber crush-
ing to plastic microbuckling is shifted from 100°C to —40°C, and modern
carbon fiber-epoxy laminates fail by plastic microbuckling at both ambient
and elevated temperatures (Barker and Balasundaram, 1987).

D. SpPLITTING

Ceramic—ceramic composites such as SiC—SiC fail in compression by a
splitting mode (Kaute et al., 1996), see Figures 1 and 7. The failure mode is
one of tensile mode I cracking along the fiber direction; the cracks develop
from inhomongeneities such as voids or inclined flaws within the compos-
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Loading

FiG. 7. Scanning Electron Microscope (SEM) micrograph of microcracking from pre-
existing voids in SiC—SiC composite under compressive loading. The microcracks grow
parallel to the loading direction. Taken from Kaute ez al. (1996).

ite. This mechanism appears to be the same basic mode of failure as the
fissuring of rocks (Nemat-Nasser and Horii, 1982; Sammis and Ashby,
1986; Ashby and Hallam, 1986). Briefly, the tensile microcracks grow stably
from local stress-raisers under increasing remote compression; eventually,
they interact and the body fails along a macroscopic shear band. This
failure mode dominates when the stiffness of the matrix exceeds that of
the fibers, and when the composite has a low toughness and high porosity.
For SiC—SiC composite made by the chemical vapor infiltration route, the
elastic modulus of the fibers (E = 200 GPa) is only half that of the matrix
(E = 400 GPa); thus, the fibers act as compliant inclusions and help to
induce the splitting mode of failure.

The compression strength is given roughly by the formula (Sammis and
Ashby, 1986)

(DK

o, = (2.4)
Vma

where K. is the mode I fracture toughness of the matrix, a is the average

radius of the pores perpendicular to the direction of loading, and C is a

coefficient which depends upon the porosity, f. The magnitude of C
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ranges from 2 for 30% porosity to 15 for 0.3% porosity. For the case of the
SiC—SiC composite investigated by Kaute er al. (1996), f = 15% and
C = 3. On taking K;,- = 3 MPavm, and a = 100 um, the formula (2.4)
gives g, = 510 MPa, which is of the same order as the observed range of
650—750 MPa. (We note in passing that the measured tensile strength is
about 200 MPa, which is about one third of the compressive strength; for
monolithic ceramics, the knockdown factor between tensile and compres-
sive strength is typically an order of magnitude.)

E. BUCKLE DELAMINATION

Splitting in a direction parallel to the main load-bearing fiber direction
is encouraged when a surface layer is debonded over a finite length.
Debonding may occur as a result of: (i) the manufacturing route, (ii)
accidental surface impact or battle damage in defense applications, and
(iii) out-of-plane loading induced by waviness of the fibers.

Whitcomb (1986) and Hutchinson and Suo (1991) have analyzed the case
of buckle delamination of a straight-sided blister. They consider a semi-
infinite solid with a pre-existing debond crack of length 25 lying parallel to
the free surface and at a depth 4 below the surface. The crack is assumed
to be of infinite extent in the direction transverse to the direction of
uniaxial stressing o, as shown in Figure le. Hence, plane strain conditions
are assumed. For the case of the subsurface crack laying in an isotropic,
homogeneous solid, the critical stress, o, is set by the Euler buckling
condition

- (h 2
crc—le(b) (2.5
where E' is the plane strain value of Young’s modulus. At this critical
load, the crack tip stress intensity vanishes. Under increasing load, the
crack opens and the strain energy release rate & increases according to
(Hutchinson and Suo, 1991)

2= 2Jsy
where
2 =[h/2E'lc2. 2.7

The crack tip suffers mixed-mode loading, such that |K,;/K,| = 0.778 at
= ¢.; the mode II component increases under increasing remote load
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such that for o > 7.550,, the delamination crack suffers pure mode II
loading.

The precise sequence of events under increasing load depends some-
what on the relation between interfacial toughness £, and mode mix. Here
we consider the simplest case and assume that toughness . is inde-
pendent of mode mix. Then, buckling begins at o = o., where o, is given
by (2.5). Delamination crack growth begins at the value of o which
satisfies (2.6), with & = £.: the delamination is immediately unstable
under fixed load. An explicit expression for the maximum stress o,
follows from (2.5-2.7) in the limiting case of small E'Z, /0. h:

E'E )

2
o.h

1
1+ =

5 (2.8)

(08

max . Oc

Typically, for ceramic matrix composites the term E'Z,/o.*h is much less
than unity so that the maximum load is approximated by (2.5). Also, we
take E’ to be the longitudinal modulus of the orthotropic composite
parallel to the debond.

Buckle delamination has been observed by Kaute er al. (1996) for a
satin-weave composite made from Nicalon™ SiC fibers in a Lanxide
alumina matrix, as shown in Figure 8. They observed crack initiation and
growth near the free surface at a location of intervening tows by splitting
of a transverse tow, see Figures 8a and b. This was followed by catas-
trophic Euler buckling of the debonded layer, at a critical stress in the
range 200 MPa to 680 MPa, depending on the precise details of the local
geometry of initial defects and on the overall alignment of the specimen in
the loading grips. From measured values of the composite axial modulus,
E =120 GPa, and an observed value of b/h of 10-15, the predicted
compressive strength is in the range 440-990 MPa. These predicted values
are somewhat higher than the measured values: the source of the error is
partly due to the fact that the compressive strength is further knocked
down by out-of-plane normal loading by the transverse plies (see Fig-
ure 8¢), and partly due to the difficulty in measuring b /A accurately.

F. SHEAR-BAND FORMATION

In polymer-matrix fiber composites with very low fiber volume fractions,
shear banding can occur, see Figure 1f. Matrix yield and fracture occur in a
band, oriented at about 45° with respect to the loading axis (Fried, 1963).
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FiG. 8. Failure of SiC fiber-reinforced alumina under direct compression by buckle
delamination. (a) Schematic of crack initiation from initial defects; (b) SEM micrograph of
stable buckling under increasing remote load; (c) Post-buckling catastrophic failure. Taken
from Kaute et al. (1996).

This failure mode is essentially identical to that which would occur in the
unreinforced matrix material and is not expected to be significant at
conventional fiber volume fractions.

G. FAILURE MAPS

The competition between the various compressive failure mechanisms
can be displayed on a fracture mechanism map. The appropriate non-
dimensional axes of the map are generated by considering the boundaries

between each mechanism. For example:

(i) Plastic microbuckling dominates elastic microbuckling when
#/7, > 0 by comparison of (2.1) and (2.3).

(ii) Fiber crushing occurs in preference to buckle delamination when
the compressive strength associated with fiber crushing, o,,,.,, is
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less than the compressive strength given by (2.5) for buckle delami-
nation. On writing o,,,, = Ee;, where E is the longitudinal
modulus of the composite and &, is the fiber-crushing strain, we
deduce that fiber crushing occurs instead of buckle delamination
when b/h < 7w/(2 V3es ). Typically, ¢;, = 2% and so fiber crush-
ing dominates when b /A < 6.4. For most practical composites, the
condition b/h < 6.4 is met and fiber crushing occurs in preference
to buckle delamination.
(iii) Fiber crushing occurs instead of plastic microbuckling when
e E 1

G "1+ {3/

via (2.3) and (2.4).
(iv) Splitting occurs in preference to plastic microbuckling when

CKic _ 1
GVma 1+ (é/v,)

from relations (2.2) and (2.5).

The boundaries identified above suggest that we can construct a three-
dimensional failure map with axes (&, E/G, CK,;-/G Vra, ¢/ y,). The
resulting map is shown in Figure 9a, and includes the main compressive
failure mechanisms with the exception of buckle delamination. The map
displays the dominant mechanism of compressive failure for a given set of
composite properties. The domain of dominance of competing failure
mechanisms is sketched in Figure 9a: the map may be used to predict the
operative failure mechanism for any given set of material parameters given
by the axes of the map. Note that the region of elastic microbuckling
occupies part of the plane, ¢/ ¥, = 0. For long surface debonds b/h > 6.4,
the domain of fiber crushing is replaced by buckle delamination; the
resulting map is of identical shape to that shown in Figure 9a but the axis

. E/G is replaced by

12\) G-

m? ( h )2 E
The map shown in Figure 9b includes contour surfaces of constant
0./G. Each contour is composed of a set of orthogonal planes, as depicted

in the figure. For example, in the region of plastic microbuckling contours
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of constant ¢,/G exist as planes normal to the @/ y,-axis. The strength,
0./G, decreases with increasing ¢/ Y, as given by relation (2.3). The
maximum possible strength shown on the map is 0./G = 1; this is achieved
by elastic microbuckling, but, as already discussed above, other failure
mechanisms usually intervene and give a lower strength than this

maximum value.
A simpler two-dimensional version of the map is also instructive: it takes

as axes the in-plane shear modulus of the composite G and the ratio of
in-plane shear strength, 7,, to fiber misalignment angle @, see Figure 10.
In other words, we take as axes the long-wavelength limit of the Rosen
formula (2.1) for the elastic microbuckling strength, and the Argon expres-
sion (2.2) for the plastic microbuckling strength. Contours of compressive
strength are straight lines with a plateau value given by the onset of fiber
crushing. Material data for a number of carbon fiber composites are
included in the figure: in all cases failure is by plastic microbuckling. It is
clear that an increased compressive strength would be achieved by increas-
ing 7, and by decreasing @, and that significant improvements in compres-
sive strength may yet be made without the intervention of fiber crushing.
The demand for improved toughness of composites has caused a progres-
sive decrease in the shear strength of the matrix, so the only strategy
available is to reduce the fiber misalignment ¢ from a value of 2-3° to

O T800/924c
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F1G. 10. Two-dimensional failure map, with test data added. Commercial polymer matrix
composites fail by plastic microbuckling, as indicated.
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much lower values. The use of pultrusion in composite manufacture
(whereby the fibers and partially cured matrix are pulled through a die)
has shown itself to be a practical processing route for highly aligned
fiber composites.!

III. Compressive Strength of Unidirectional Composites
Due to Microbuckling

In this section a number of theoretical and experimental studies are
summarized in order to elucidate various aspects of the microbuckling
phenomenon. In Section A, the simplest estimates of initiation strength for
microbuckling in rate-independent composites are determined by kinking
theory: the fibers are taken to be inextensional and fiber-bending resistance
is neglected. The kinking theory is then used to estimate conditions for
microbuckling for a variety of composite constitutive laws: elastic-plastic,
creep, visco-elastic, and low-cycle fatigue.

In Section B, the effect of fiber-bending resistance on the infinite band-
collapse response is determined through the use of couple stress theory. A
small strain theory is adequate to predict the initiation strength and the
width of a microbuckle: the width is set by fiber fracture in bending. Finite
strain calculations are used in order to estimate the post-collapse re-
sponse, particularly when fiber fracture is not an issue. The calculations
show that the post-collapse strength settles to a steady-state value, o,
associated with band broadening; this steady-state value can be calculated
directly by a work calculation from kinking theory. The infinite band-
bending theory is also used to estimate the compressive strength associ-
ated with random fiber waviness. This calculation uses digital signal
techniques in order to calculate the probability density function of failure
associated with a given power spectral density of fiber waviness.

The compressive strength of the case of a finite region of initial fiber
waviness is discussed in Section C. A two-dimensional finite element
scheme is used, and couple stress theory is used to include the effects of
finite fiber-bending resistance. Again, the fiber diameter sets the internal
length scale of the microstructure. The main finding is that the compres-

! Neptco Inc. have recently introduced a carbon fiber-epoxy composite Graphlite™ with a
fiber misalignment of less than 0.5°. The measured compressive strength is about
2.0 GPa (Neptco, 1994).



Compressive Failure of Fiber Composites 63

sive strength is given to a good approximation by kinking theory unless the
region of initial waviness is small. The role of multi-axial loading in
knocking down the axial compressive strength is addressed: the knockdown
factors for a small region of fiber waviness are similar to those for an
infinite band of initial waviness.

1. Assumed Collapse Response from an Initial Imperfection in the
Form of an Infinite Band

We begin by summarizing the qualitative details of rate-independent
microbuckling for a composite with a pre-existing infinite band of imper-
fection in the form of fiber misalignment. Quantitative details are covered
in subsequent'sections. Assume that the fibers are uniformly misaligned by
a constant angle ¢ within the band in the stress-free initial configuration
as shown in Figure 3. The normal to the band is taken to be at an angle
to the fiber direction. The fibers are assumed to possess a finite-bending
resistance so that the-additional fiber rotation ¢ under load is continuous.

Consider the collapse response for the geometry given in Figure 3,
under an axial stress o . The collapse response is presented in the form of
remote axial stress versus maximum additional fiber rotation, ¢,,, in
Figure 11. The deformation mode within the band is a combination of
in-plane shear parallel to the fiber direction and direct-straining transverse
to the fibers. Fibers within the band attain large rotations (of up to about
60° for the case B = 30°) and so a non-linear constitutive response is
appropriate for the smeared-out behavior of the composite within the
band. Initially, fiber rotation occurs under an increasing remote stress, o,
as indicated by a typical point A of Figure 11. Note that the fibers within
the band rotate by a greater amount than material outside the band. The
additional rotation leads to geometric softening, which more than offsets
the strain hardening within the band. With continued fiber rotation the
load goes through a maximum (point B) and then decreases to a lower
steady-state value as shown in Figure 11. The maximum is attained after
only a few degrees of fiber rotation. Beyond the maximum load point, fiber
rotation continues and the band continues to broaden, see point C of
Figure 11. Eventually, the matrix strain hardens sufficiently within the
band for the material to “lock-up” and continued end shortening of the
structure is due to broadening of the band in the axial direction at a
constant value of remote stress, o,, point D. It is found experimentally
that the lock-up state within the band is associated with a state of zero
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Lock-up
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Fic. 11. Typical infinite band collapse response, with the role of fiber bending included.
¢,, is the maximum value of fiber rotation in the composite, for any given remote stress o ™.

volumetric strain within the band: as the fibers rotate they first lead to
dilation within the band, followed by compaction until lock-up occurs at
vanishing volumetric strain (Chaplin, 1977, Evans and Adler, 1978;
Sivashanker et al., 1995). The overall buckling response is akin to tensile
drawing of a polymer, whereby a neck forms by geometric softening;
subsequently, orientation hardening occurs within the neck and leads to
steady-state neck propagation known as drawing.

The total end shortening A, of the composite of finite length 4 is the
sum of elastic shortening Ay of the fibers and the end shortening A
associated with fiber rotation; see Figures 12a and b. To an excellent
approximation, the o versus A collapse response may be considered to
be the universal collapse curve, and the elastic end-shortening is given by
Ag = oc”h/E, , where E; is the longitudinal elastic modulus of the com-
posite. The o versus A, collapse response is sketched in Figure 12b for
two different lengths ~# of composite: note that an increasingly strong
snap-back behavior is predicted with increasing 4. (Kyriakides et al., 1995)
have confirmed this using detailed finite element calculations where they
treat the fibers and intervening matrix as a series of discrete layers.) The
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Fig. 12. Collapse response, presented in form of (a) o* versus end shortening A

associated with fiber rotation, and (b) o versus total end shortening A, associated with
both fiber rotation and elastic axial compliance of the composite of height A.
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four representative stages of deformation A-D given in Figure 11 are also
shown in Figures 12a and b.

The description above of the collapse process represents the consensus
of opinion from the work of Shih and co-workers (Liu et al., 1995; Moran
et al., 1995), Kyriakides and co-workers (Kyriakides et al., 1995) and Fleck
and co-workers (Sutcliffe and Fleck, 1994; Sivashanker et al., 1995). Liu et
al. (1995) were the first to observe steady-state band broadening by testing
a composite of sufficiently high-failure strain for fiber fracture not to
intervene (IM7 fibers in APC-2 PEEK matrix). Experimental observations
(Sutcliffe and Fleck, 1994; Sivashanker et al., 1995; Fleck et al., 1996) have
been made recently of band broadening in fiber composites which exhibit
fiber fracture. It is observed that fiber fracture is intermittent along the
length of a microbuckle band, and that the average traction carried by a
microbuckle band is almost identical to that carried by a microbuckle band
displaying no fiber fracture: the infinite band collapse response is hardly
changed by the occurrence of fiber fracture.

A. KINKING THEORY

As reviewed in Section IL.B, the theoretical studies by Argon (1972) and
Budiansky and Fleck (1993) have shown that microbuckling in polymer
matrix composites is associated with a non-linear plastic response of the
matrix. The analysis of Budiansky and Fleck (1993) for plastic microbuck-
ling considers the effects of initial imperfections, plastic strain hardening,
and combined remote shear stress and axial compression. Slaughter et al.
(1992) extended the Budiansky and Fleck (1993) analysis to general
multi-axial loading. We begin by summarizing the treatment of Slaughter
et al. (1992).

The following kinking theory is an infinite band calculation in the spirit
of one-dimensional shear localization analysis. A uniform imperfection in
the form of a finite fiber misalignment angle ¢ is assumed within a band
(see Figure 3), and the evolution of fiber rotation within the band is
deduced from algebraic equations for continuity of traction and displace-
ment at the band boundary. The kinking analysis allows for the determina-
tion of analytical formulae for the critical stress for microbuckling. As in
most treatments of compressive kinking, the fibers in these calculations are
assumed to be inextensional. This has the effect of shielding the matrix
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from axial stress, and therefore the actual effect of this stress on matrix
plasticity is not taken into account.

Consider the collapse of a kink band inclined at an angle 8 to the main
fiber direction, as shown in Figure 13. (It is observed experimentally that
kink bands are inclined typically at 8 = 20°-30°.) It is assumed that the
fibers are inextensible and that uniform straining within the kink band is
associated with a fiber rotation, ¢. It is further assumed that initial fiber
misalignment within the composite is represented by the angle, o.

Two Cartesian coordinate systems, (e,,e,) and (g,, €,), are defined
such that e, and e, are parallel and normal to the fiber axes outside the
kink band, and €, and €, are parallel and normal to the fiber axes inside
the kink band. These two coordinate systems are related by

e, = g, cos(p + @) — £,sin(d + ¢)
e, = £,sin(¢ + ¢) + €, cos(p + ) (3.1)
The stress components outside the kink band are defined by
o” = —oee; + ore e, + 77(e e, + e,e;) (3.2)
and those within the kink band are defined by

o =o0,¢8,8, + ore,&e, + 7(g,€, + £,8,) (3.3)

—— — — — — —

e — e — —— —

kink band

A
oy \i"cL

\oq

FiGc. 13. Definition of coordinates within kink band. The fibers are taken to be
inextensional.
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Continuity of Tractions Continuity of tractions across the kink band
interface can be expressed as

n-c’=n-o (3.4)

where n = e, cos B + e, sin B is the unit normal to the kink band inter-
face. Equations (3.1)—(3.3) lead to the two scalar equations for continuity
of tractions in the £, and €, directions, respectively,

— o7 cos Beos(p + @) + of sin Bsin(p + @) + 7 sin( B+ & + ¢)
=0, cos(B—d—¢)+ 1sin(B— ¢ — &) (3.5)
o7 cos Bsin(¢ + @) + o5 sin Bcos(p + ¢)

+7°cos(B+ ¢+ &)
=o,sin(B—¢—¢)+7cos(B— b — @) (3.6)

Because the fibers are assumed to be inextensible, the axial stress in the
kink band, o, is of no interest in the analysis to follow and eq. (3.5) need
not be considered further.

It is assumed that the initial misalignment, E, is small. Furthermore, it 1s
anticipated that consideration of small deformation angles, ¢, will be
sufficient to examine the critical events associated with microbuckling. For
small ¢ + ¢, linearization of eq. (3.6) provides

(¢ + ¢) (o] cos B— 277 sin B)

= (o7 — of)sin B — (¢ + ¢p)oy cos B

+(r— 7°)[cos B + (b + ¢)sin B] (3.7)

Equation (3.7) can be further approximated, when (7/2) — B> 0, by
dropping the term (r — )¢ + ¢)sin B from the right-hand side, to give

T— 1"+ (07 — o7)tan B

— . (3.8)

o —27° tan B =

This form of the approximation is chosen so that, when the composite
behaves elastically, a proper account of the terms involving the remote
stresses is maintained.
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Kinematic Relations XKinematic conditions for kink-band deformation are
now examined. Consider a material point P within the kink band, as shown
in Figure 13. The position vector r to point P is

r=¢&e,+ &€, =y(—e tan B+ e,) + xg, (3.9

where the scalar lengths &, &,, x, and y are defined as shown in Figure
13 and are related by

x=¢+ & tan(B - 6 — ¢)

_ (3.10)
y=§&cosBsec(B~¢— &)

The velocity of point P 1s
v = yj~e, + yéie, + xde, (3.1D

where y* and é7 are, respectively, the shear strain rate and transverse
strain rate outside the kink band, and f(¢) = df(¢)/dt.
The strain rate tensor within the kink band is related to the velocity
field by
) 1 T
g = —Z—[Vv + (Vv)' ] (3.12)
where the superscript 7 denotes the transpose, and the gradient operator
Vis

V=sl——&—— + €, i (3.13)
23! 23
With the strain-rate components within the kink band defined by
1 .
£ = €,7€,€, + 5‘5’(8182 + &,&,) (3.14)

eq. (3.12), along with egs. (3.1) and (3.9-3.11), gives the kinematic
relations

ér=¢¢tan(B— ¢ — ¢)
+[é°; cos(¢ + ¢) — ¥ sin(¢ + d))]cos Bsec(B— ¢ — ¢)

y=¢+ [#° cos($ + $) + &7 sin(d + d)|cos Bsec(B— ¢ — ¢)
(3.15)
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Differentiating eq. (3.9), and noting that ¥ = v, y = yé3, and &, = ¢e,, it
follows from eq. (3.11) that

B = —(é%sin B+ ¥* cos B)cos B (3.16)

For ¢ + ¢, €7, and y* small, egs. (3.15) and (3.16) reduce to the
approximate kinematic equations

er = e; + ¢tan
v=7vy"+ ¢ (3.17a)
B=B,
where B, is the kink-band angle associated with zero remote straining. In
the limiting case B — 0, the analysis reduces to the case of pure shear
deformation within the kind band, as outlined by Wisnom (1990). In the

case of vanishing remote transverse strain and shear strain, the rate
equations (3.15) can be integrated to give

y=¢
cos(B— ¢ — ¢) (3.17b)
er =1lo ==
cos( B — ¢)

Note that (3.17b) implies that the volumetric strain in the band vanishes
when the fibers have rotated to the point when ¢ = 2( 8 — ¢).

Constitutive Relations: Deformation and Flow Theory Versions of Plasticity
If the composite deforms elastically, then the stress components (o4, 7) in
the band are related to the strain components (e, y) in the band via

O-T = ETeT (3.188)
r=Gy (3.18b)

where E; and G are the transverse and shear elastic moduli for the
composite. Similarly, the components of remote stress (o7, ™) are related
to the remote strain state (e7,y™) via o7 = Ere7 and 7° = Gy~. The
state of stress within the band may be related to the rotation ¢ within the
band via (3.17), to give

or = o7 + E; ¢ tan B} (3.19)

T=1" + Go
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The exact equation for continuity of tractions, eq. (3.6), combined with this
result and then linearized gives the approximate elastic kink-band
response

@
o +of — 277 tan B = [G + E, tan’ ,8] m (3.20)

An examination of eq. (3.8), the approximate equation for continuity of
tractions, shows that it also reduces to the correct result for elastic
kink-band response, eq. (3.20).

Flow-Theory Version The following constitutive equations for a flow-
theory version of plasticity have been derived by Budiansky and Fleck
(1993) and the derivation is only outlined here. A similar approach has
been adopted by Sun and Chen (1989), Sun and Yoon (1991), and
Schapery (1995).

The elastic component of the strain tensor is given by (3.18). Assume
that the composite is characterized by the quadratic yield condition

2
Ty Ty

where 7, and oy, are the plane strain yield stresses in pure shear and

pure transverse tension in the case of perfect plasticity (when 7, = 7,, a
constant). The effective stress, 7,, which can be rewritten as

s leo

2 0-'1' 2
+ (—) (3.21)

O—Ty

T, = \/72 + (o7/R) (3.22)
1s used as a plastic potential for the plastic strain rates, y? and é%. The
parameter R = or,/7, defines the eccentricity of the yield ellipse, which
expands homogeneously with increasing 7, due to strain hardening.

Discounting the possibility of elastic unloading, the associated flow
theory relations for plastic-strain rates, based on 7, as a plastic potential,
can be written as

o7,
y? = F(1,) T,

or

o7 (3.23)
el = F(r1,) ‘ T,

gr
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where F(r,) is a measure of the rate of strain hardening. A work-
equivalent effective plastic strain rate, ¥, is defined by

Tyl + orél = 1,97 (3.24)

and it follows that

3P = F(r)%, =V (#7)7 + R*(é2)* . (3.25)

Thus, we interpret F(7,) as the inverse of the tangent modulus of the 7
versus y” response in pure shear.

Deformation Theory Version Next, we derive a deformation theory version
which coincides with the above flow-theory version for the special case of
proportional loading. Substituting eq. (3.24) into eq. (3.22) and assuming
proportional loading leads to

p
o= (1_)
Te
el = ¥\ or (3.26)
T T, R?
v =V (y?) + R*(ep)’

Note that the functional dependence of y? on 7, is taken to be the same
as that of y? on 7 for pure shear. Equations (3.26) have the form of a
deformation theory of plasticity. The linear elastic portion of the strain
state is related to the stress state via (3.18).

It is unclear whether deformation or flow theory is the more appropriate
constitutive law for addressing fiber microbuckling. We shall see below
that the maximum compressive stress is carried by the kink band at rather
small values of fiber rotation (a few degrees). In this regime, relation
(3.17a) indicates that straining is proportional within the kink band for the
case of uniaxial compression: the distinction vanishes between deformation
and flow theories. In the post-collapse regime of large fiber rotations
within the kink band, straining is non-proportional and the flow theory
prediction is stronger than the deformation theory prediction. There are
strong theoretical arguments and convincing experimental evidence that
deformation theory is more accurate in the prediction of plastic buckling
loads in metallic structures; see for example the review by Hutchinson
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(1974). Fleck and Jelf (1995) have performed non-proportional loading
tests on hoop-wound carbon fiber-epoxy tubes; they found that the defor-
mation theory description (3.26) is more accurate than the flow theory
version (3.23). We shall continue with the deformation theory descrip-
tion and now derive the compressive strength of a kink band for a
rigid-perfectly plastic solid, and then for a Ramberg-Osgood strain-
hardening solid.

2. Rigid-Perfectly Plastic Solid under Multi-Axial Loading

Slaughter ez al. (1992) have derived an algebraic expression for the axial
collapse strength, o, under multi-axial loading for the limiting case of a
rigid-perfectly plastic solid of shear yield strength 7,

arT, — 7" — o7 tan B
= — 3.27
% (¢ + @) (327

where o = /1 + R*tan? B. This relation indicates a large knockdown
effect of both in-plane shear stress and transverse stress on the axial
compressive strength. Jelf and Fleck (1994) have confirmed the accuracy of
(3.27) for the case of combined axial and shear loading by performing
compression-torsion tests on unidirectional carbon fiber-reinforced

epoxy tubes.

3. Effect of Strain Hardening on Compressive Strength

The in-plane shear response of polymer matrix composites at small
levels of strain may be adequately described by the Ramberg-Osgood

description
T 3( 7\
—7-=——+—(——) (3.28)

in terms of the three-parameter fit (ry,yy,n). The shear modulus G
follows as G = 74/, . For polymer matrix composites, 7, 1s in the range
40-60 MPa, y, equals approximately 1%, and the strain-hardening expo-
nent » is in the range 3—10, as collated by Fleck and Jelf (1995).
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For the case of an inclined kink band, the strain state within the band is
composed of both shear and transverse straining. The Ramberg-Osgood
description (3.28) generalizes to

Ye Te 3(Te )n

Yy Ty 7
where 7, is given by (3.22) and the effective strain v, is composed of an
elastic part

(3.29)

Ty

7.e‘yY

Ty

Ye =

and a plastic part

,_ [T
Ye 7 Ty )

For the deformation theory solid, v/ is given by (3.26), and for the flow
theory solid, ¥ is defined by (3.25).

Budiansky and Fleck (1993) have developed the following analytical
expression for the uniaxial compressive strength for the deformation
theory solid,

i ! (3.30)
= = (n—1)/n :
G* (3)1/ &/ vE
1+ nl|—
7 n-—1

where G* =[1 + R? tan® B]G and v} = y,/y/1 + R? tan® 8. The criti-
cal stress o, is achieved in the regime of proportional straining at small
values of fiber rotation ¢, and so the above result also remains valid for
flow theory. Figure 14 shows how o, varies with ¢/y% for n = 3,5, 9 and
«: we note that strain hardening has little effect on the strength and so the
elastic-perfectly plastic estimates of Section II.B remain valid. Typically,
the measured compressive strength of polymer matrix composites is o./G
= 0.2 and the corresponding estimated value for fiber waviness is ¢/ vy =
4 from Figure 13. With vy taken as 1% this suggests a fiber misalignment
angle of about 2.3°.

4. Time-Dependent Kinking

Many fiber composites are known to exhibit time-dependent deforma-
tion behavior, or creep. These include polymer matrix composites
(Horoschenkoff et al., 1988; Ha et al., 1991) and woods (Dinwoodie, 1981).
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Fic. 14. Effect of fiber misalignment angle ¢ upon the collapse strength o, for a range of
values of strain-hardening exponent n. The results are taken from the kinking analysis of

Budiansky and Fleck (1993).

The literature on visco-elastic buckling is extensive. Early analyses (e.g.,
Biot, 1957) performed a bifurcation analysis to predict the critical load for
a perfect structure. More recently, the significance of initial imperfection
and material non-linearity have been appreciated in governing time-
dependent microbuckling (Schapery, 1993; Slaughter et al., 1992; Slaughter
and Fleck, 1994a). In each case, the above equilibrium and kinematic
relations hold for the kink band and the lifetime is calculated by time-
integrating the rate of fiber rotation in the band, for a range of
assumed constitutive laws. Unfortunately, there remains a lack of experi-
mental data on visco-elastic microbuckling, and the critical event dictating
the failure life, i has not been resolved. There are several possibilities
which remain to be explored:

(i) a critical value of fiber rotation ¢; can be assigned, corresponding
to tensile fracture at the fiber-matrix interface.

(i) failure occurs by static plastic kinking when ¢ + ¢ reaches a value
of misalignment that, together with o = o, satisfies the static
criterion (3.30); or

(iii) we simply say that an upper bound to ¢, corresponds to ¢ = x.

At elevated temperatures, metal matrix and ceramic matrix composites
undergo creep. Slaughter et al. (1993) have performed a theoretical analy-
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sis of creep microbuckling, based on power-law viscous behavior within the
kink band. The composite is assumed to creep under in-plane shear by a
shear-strain rate y related to a shear stress = via

Y T\"
-— = (—) (3.31)
Yo To

where (7,,7,) and the creep exponent m are material constants. The
amount of fiber rotation ¢ as a function of time ¢ for kinking under a
fixed-axial stress o is deduced by substituting the constitutive law (3.31)
into the equilibrium and kinematic statements given above to obtain

(Slaughter et al., 1992),

( : )1(70*),,1 : : (3.32)
t = — | — ] |= - — — :
m=1)3 Vo) |e""  (F+e)"

Here, the inclination B of the kink band is taken into account through
the definitions

Yo =Y./, TS =ar a =11+ R*tan’ B (3.33)

o o’

where (see eq. (3.22)) R can be regarded as a parameter equal to the ratio
of transverse creep strength to shear creep strength. The creep lifetime
depends upon the particular criterion chosen to define failure. If we adopt
the assumption (iii) given above that the creep lifetime, ¢, is set by the
time for ¢ — o, then (3.32) reduces to

= [om = D3 3oy (3.34)

It is of some interest to estimate whether creep kinking might be an issue
in ceramic fiber /metal matrix composites, under conditions of moderately
elevated temperature and sustained high load. Assuming the plausible
values 7, = 100 MPa, 3, = 107 s~ !, o = 1500 MPa, ¢ = 3°, and m = 5,
gives ¢, = 120 hours, which suggests that creep kinking may indeed have to
be considered in the design of metal-matrix composites.

5. Kinking Fatigue

Slaughter and Fleck (1992) have analyzed fatigue kinking from two
viewpoints: (i) fatigue failure by low-cycle fatigue of the matrix within the
kink band, and (ii) failure by cyclic ratchetting of the material within the



Compressive Failure of Fiber Composites 77

kink band until the plastic strain accumulation is sufficient to trigger the
plastic microbuckling instability. Little experimental data are available on
compressive fatigue failure of fiber composites. Soutis et al. (1991a) ob-
served fatigue kink growth from a circular hole in a carbon fiber epoxy
composite, and Huang and Wang (1989) measured the stress-life fatigue
curve for un-notched specimens made from alumina fibers in an
aluminum alloy matrix. Slaughter and Fleck (1992) found that the pre-
dictions of their ratchetting fatigue model were in better agreement
with the experimental results of Huang and Wang than the predic-
tions of the low-cycle fatigue model. Further work is clearly required
in order to elucidate the fatigue failure mechanisms as a function of
material composition.

B. THE ROLE OF FIBER BENDING: INFINITE-BAND ANALYSIS

The infinite-band analyses described above suffer from two main
limitations:

(i) they are unable to predict the width of the microbuckle band, as the
constitutive law contains no length scale, and

(ii) they assume that the initial imperfection exists as an infinite band
with an assumed orientation B rather than as a finite region.

In the current section the first assumption is relaxed by including the
role of fiber bending in an infinite-band analysis. In the following Section,
I11.C, the compressive strength is calculated for a two-dimensional initial
region of waviness, relaxing the second assumption.

Commonly, the fiber-bending strength is sufficiently small for fully-
developed kink bands to be bounded by fiber breaks. The onset of fiber
fracture during collapse sets the kink-band width, defined as the fiber
length w within the kink band. An early analysis (Budiansky, 1983), based
on the simplifying assumptions of perfectly aligned fibers and rigid-ideally
plastic behavior of the composite in shear and transverse tension, together
with incorporation of the effects of couple stresses provided by fiber
bending, gave

*
27y

w_m(E )" (3.35)
4 4 '
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for the ratio of the final kink width to the fiber diameter d, in terms of the
longitudinal composite modulus E; and the B-modified shear yield strength
5 = aty. This formula was based on the additional assumption that the
fibers were perfectly brittle in tension. Measurements of kink-band widths
by Jelf and Fleck (1992) were in good agreement with (3.35) over a wide
range of parameters.

1. Summary of the Couple Stress Analysis of Fleck et al. (1995b)

In this analysis, the individual responses of the fibers and matrix are
smeared out, and the composite is considered to behave as a homoge-
neous, anisotropic solid. A couple-stress formulation is used to take fiber-
bending resistance into account. Descriptions of kinematics and equilib-
rium are now outlined, followed by constitutive laws and a criterion for
fiber fracture.

Kinematics 1In the initial stress-free configuration, the fibers are assumed
to possess a small, initial angular misalignment, ¢, which is perfectly
correlated along a direction inclined at an angle B to the transverse
direction. Thus, ¢ depends on the single variable x + y tan 8, where the
Cartesian coordinates (x, y) are parallel and transverse to the ideal fiber
direction, respectively, as shown in Figure 15a. For y = 0, it is assumed
that ¢ is an even function of x.

Equilibrium Consider equilibrium of a representative material element in
the deformed configuration (see Figure 15b). The element is subjected to a
longitudinal compressive stress o aligned with the fiber direction, a sliding
shear stress 7g, a transverse shear stress 7, and a transverse tensile stress,
or. The fibers embedded in the material offer bending resistance; thus,
the representative material element carries a bending moment per unit
area, or couple stress, .

Moment equilibrium gives

om
E— =7 — Tr (336)

The presence of couple stresses makes the stress tensor unsymmetric,
with 75 # 7.
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FiG. 15. (a) Deformed shape of infinite band. Under load, the fibers bend and rotate from
an initial inclination ¢(x) to a deformed inclination ¢(x) + ¢(x). (b) Stresses on a represen-
tative element of solid. The fibers and matrix have been smeared out to a continuum.

As explained by Fleck et al., (1995b), considerations of equilibrium and the
kinematics of Figure 3 provides the governing differential equation of
equilibrium

dm -
— +0(¢p + ¢) =15+ oy tan B (3.37)

In order to proceed, we need a constitutive law in order to relate the
generalized stress components (m, 7¢, ;) to the fiber rotation, ¢.

Constitutive Law The fibers are treated as linear elastic beams undergo-
ing inextensible bending, and the matrix contributions to couple stresses
are neglected. Simple beam theory for circular fibers of diameter 4,
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Young’s modulus E;, and volume fraction c gives the relation between the
couple stress m on the composite and the associated curvature d¢/dx as

cE;d* d¢

3.38
16 dx (3.38)

The shear and transverse responses of the composite are taken to be
those of a non-linear deformation theory solid, as suggested by (3.18),
(3.26), and (3.28).

Fiber Fracture Criterion It is found experimentally (see for example Soutis
and Fleck, 1990) that the width of the kink band is set by fiber fracture in
tension due to local fiber bending. The strain in the fibers is the sum of the
bending strain and the compressive strain associated with the axial stress
o. We equate the maximum tensile strain in each fiber with the tensile
fracture strain of the fiber ¢, to obtain the fracture criterion
d\|d¢
5%

g

- = 3.39
max E ( )

Er =

where |d¢/dx|m.x is the maximum absolute value of curvature along each
fiber, and E is the longitudinal Young’s modulus of the composite. This
fracture condition will be satisfied at two locations, x = +x,, and the
width of the kink band is defined as the distance 2 |x,| along the fibers
between the points of fiber fracture.

It 1s noted that the assumption of inextensible fibers was made in the
kinematics and equilibrium relations, but axial straining of the fibers is
implicit here in the fiber fracture condition. Budiansky and Fleck (1993)
have included fiber extensibility in the kinematic and equilibrium relations
of a particular version of their kinking analysis, and found that for typical
polymer-matrix composites, fiber extensibility has little effect on the
collapse response.

Solution Method The équilibrium equation (3.37) may be reduced to a
differential equation in ¢ by eliminating m, ¢, and o, via (3.26) and
(3.38) to give

Ed* d%

—16—?&7+0(¢+$)=Te\/1+R2tan2B (3-40)

where the composite modulus E has been used as an approximation for
cE;. The effective stress 7, is related to the effective strain v, by the
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non-linear Ramberg-Osgood relation (3.28), and in turn, y, may be written
in terms of ¢ as

Y, = d)\/l + R®tan? B (3.41)

We treat (3.40) as the governing non-linear differential equation for the
rotation ¢(x) to be solved, together with (3.41) and the Ramberg-Osgood
relation (3.28).

The imperfection in fiber alignment ¢(x) is assumed to take the form

—_ —_ aTX
d(x) = ¢, cos(%—) Ix| <
(3.42)

=
V
SN

d(x) =0

where the magnitude of the fiber waviness ¢, and the wavelength W
characterize the imperfection.

Using the above analysis, Fleck et al. (1995b) generalized the result
(3.35) for an elastic-ideally plastic composite, with finite fiber failure strain
&r, and obtained the implicit equation for the kink width w as

2 __72
4w\~ YV E 4w\~
— ] - + | — 4
(wd) N ( ) ] G4

md

For ¢ = vy = 0, this reduces to Budiansky’s previous result (3.35). Typi-
cally, for polymer matrix composites, 73 /E is in the range 0.005-0.015,
and w/d is in the range 10-20 for a wide range in value of & = 0-2%
and y§ = 0-2%. Fleck et al. (1995b) further showed that w/d is rather
insensitive to the value of strain-hardening exponent, n, for the case of a
composite which strain hardens in accordance with (3.28). The inclination
of the kink band, B, and the width and magnitude of the initial waviness
also have little effect on w/d.

The typical collapse response is shown in Figure 11 for the strain-
hardening case (n = 3) with a small initial imperfection (¢/ vy} = 4, width
of imperfection w/d = 20). With increasing fiber rotation, plastic defor-
mation spreads along the fiber direction and the compressive stress attains
a maximum value o,. Fleck et al. (1995b) showed that the value of g,
exceeds the kinking strength (3.30) by less than 10%, provided w/d
exceeds about 20. In other words, kinking theory suffices in order to
predict compressive strength unless the physical size of the imperfection is

4(v%/E)
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less than about 20 fiber diameters. During collapse the fibers rotate within
the microbuckle band, leading to an end shortening of the composite, as
shown in Figure 12a. Eventually, at a fiber rotation of ¢, = 2(8 — @),
volumetric lock-up occurs and continued end shortening of the composite
is associated with broadening of the locked-up central region, as depicted
in Figures 11 and 12. A steady state is achieved, with the remote stress
equal to the band-broadening stress, o, .

2. Calculation of the Band-Broadening Stress, o,

The band-broadening stress can be calculated by a work calculation,
along similar lines to that given by Moran et al. (1995). In steady state,
remote material outside the microbuckle band is convected into a state of
simple shear within the locked-up band; the stored elastic-bending energy
within the band of locked-up material vanishes. Finite strain-kinking
theory is adequate in order to calculate the associated energy change,
provided we assume the composite behaves as a deformation theory solid.
Consider the steady-state limit of broadening of a band of locked-up fibers
under a constant remote stress, o,. We neglect the effect of fiber fracture
and examine the work done when a strip of width 8w is convected into the
locked-up state ¢ = 28 within the microbuckle band from a remote state
of uniaxial compression. The end shortening is dw(1 — cos(28)) and the
external work done W% is given by

WE =g, 6w(l — cos(28)) (3.44)

The internal work done W' in rotating fibers within a band of fiber length
ow from ¢ = 0to ¢ = 28 is given by

o " d¢]d¢ (3.45)

by making use of the kinematic relations (3.17b) and the constitutive law
(3.26). The band-propagation stress is calculated by equating the internal
work and the external work; typical results are shown in Figure 16 for a
Ramberg-Osgood strain-hardening curve, as specified by (3.29). In order to
interpret Figure 16, we assume that the propagation direction B of the
microbuckle is set by the details of the propagation process (elucidated in
Section IV), and is therefore an assumed parameter rather than a predic-
tion from the band-broadening analysis. Typically, B is in the range
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0.2
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FiG. 16. The steady state band-broadening stress, o, for a Ramberg-Osgood deformation
theory composite, under uniaxial stress. The magnitude of o, depends upon the assumed
inclination B of the microbuckle band.

20-30°, giving a value for ¢, /G in the range 0.03-0.12, depending on the
assumed value for the strain-hardening exponent n. We note that the
band-broadening stress is significantly less than the typical collapse strength
of o./G = 0.2: initiation of microbuckling from the initial imperfection
determines the load-carrying capacity of the structure. In contrast to the
initiation strength o, which is relatively insensitive to the strain-hardening
exponent 7, the band-broadening stress o, increases substantially with
increasing n. The band-broadening stress will be used later in Section IV
as one ingredient in a crack model of microbuckle propagation.

3. Knockdown in Strength under Multi-Axial Loading

The knockdown in compressive strength due to the presence of in-plane
shear and transverse stress has already been discussed in Section III.A.6,
for the case of kinking theory. For the rigid-ideally plastic solid, the
knockdown in compressive strength follows from (3.27) as

o, T o7
=1- ~ tan (3.46)

aTy ATy
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where o, is the uniaxial compressive strength and a = \/ 1 + R? tan® B.
Slaughter et al. (1992) and Shu and Fleck (1996) have shown that (3.46)
remains reasonably accurate when strain-hardening and fiber-bending
resistance are taken into account.

4. Infinite-Band Strength in Case of Random Waviness

In practice, the fiber misalignment angle ¢ varies throughout the
composite in a three-dimensional random manner. The underlying rela-
tionship between fiber waviness and processing conditions remains
unexplored. Although Yurgatis (1987) has shown that the distribution in
misalignment angle is roughly Gaussian in nature, little information is
available on the statistical nature of random fiber waviness. Significant
progress has been made on this difficult experimental task: Clarke et al.
(1996) have measured the power spectral density of a glass fiber-reinforced
epoxy by confocal laser-scanning microscopy. In a related study, Slaughter
and Fleck (1994b) determined the relation between the power spectral
density of fiber waviness and the observed Weibull distribution of com-
pressive strength. Briefly, they assumed a flat-power spectral density for
the misalignment angle as a function of distance along the fiber direction.
The fiber shape is taken to be invariant along lines inclined at an angle
(r/2 — B) to the fiber direction. Slaughter and Fleck further assumed the
power spectral density was characterized by a given value for the mean-
square spectral slope, with a lower cut-off for the spectral wavelength.
Monte-Carlo realizations for the fiber waviness were generated, and the
compressive strength for each realization was determined by the couple-
stress formulation of Fleck et al. (1995b) in order to take fiber bending
resistance into account. The ensemble of results was then used to compute
a probability density for compressive strength, and a Weibull fit was
conducted to extract the Weibull parameters. Good agreement was ob-
served between the predicted Weibull parameters and the values measured
independently by Jelf and Fleck (1992). Thus, the underlying relationship
between the statistics of fiber waviness and the resulting distribution of
compression strength was determined. Further work is required in order
to measure imperfection spectra and the corresponding distribution of
compressive strength for a range of composites. Additional micro-
mechanical calculations are needed in order to establish the relationship
between the two.
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C. INITIATION STRENGTH FOR A FINITE IMPERFECTION

So far, we have idealized the initial fiber misalignment as an infinite
band, so that the response can be calculated in a one-dimensional frame-
work. Recently, this assumption has been relaxed and the compressive
strength has been estimated for a mo-dimensional distribution of initial
fiber misalignment. Two alternative strategies have been adopted:

1. The composite is treated as distinct, perfectly-bonded layers of fibers
and matrix.

2. The effect of the individual fibers is “smeared-out” by treating the
composite as a Cosserat continuum capable of bearing couple stresses.

Kyriakides et al. (1995) used the first strategy to study the early stages of
microbuckling from a small region of waviness. In similar fashion, Sutcliffe
et al. (1996) used this method to calculate microbuckle initiation and early
growth from a sharp, open notch under remote compressive loading. This
approach is useful when the initial region of fiber waviness extends over
only a small number of fibers, but becomes prohibitively expensive in
computer time when a large number of fibers are considered.

Fleck and Shu (1995) and Shu and Fleck (1996) have adopted the
alternative strategy of smearing out the effects of each individual fiber and
developed a finite strain, finite element code based on couple-stress
theory. Thus, it is conceived that each element contains many embedded
fibers. Here, we summarize the two-dimensional theory and then collect
the main results found to date. In order to obtain the constitutive law, the
fibers are assumed to behave as elastic Timoshenko beams embedded
within a non-linear dilitant plastic matrix. A virtual work expression is
obtained for a two-dimensional unit cell consisting of a fiber of volume
fraction ¢ adhered to matrix of volume fraction (1 — c¢). Macroscopic
stress and strain quantities are thereby derived for the smeared-out
homogeneous composite. It is found that the governing equations are
identical to those of Cosserat couple stress theory (Cosserat and Cosserat,
1909). The significance of the unit cell analysis is that the independent
micro rotation angle 6 in the general couple stress theory is shown to be the
independent rotation angle 6, of the fiber cross section. The bending
resistance of the fibers is set by the fiber diameter, d, and so the
constitutive law involves the fiber diameter as the internal length scale.
Deformation and flow theory versions of a dilitant plasticity law for the
composite are proposed along the lines of (3.21-3.29).
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The finite element procedure is based upon a Lagrangian formulation of
the general finite deformation of the composite, and can deal with both
geometrical and material non-linearities (see Fleck and Shu, 1995, for
details). A version of the modified Riks algorithm (Crisfield, 1991) is
adopted to handle snap-back behavior associated with the microbuckling
response. Imperfections in the form of fiber waviness are included in
the formulation.

The finite element code has been used to determine the effect of a finite
region of initial waviness upon the compressive strength of the composite.
The main results to date are summarized below.

1. Effect of Imperfection Size on Compressive Strength

Shu and Fleck (1996) have explored the effect of a finite region of initial
fiber misalignment on the collapse response of the composite. Again, a
uniform remote compressive stress o~ is applied in the x,-direction, as
shown in Figure 17. Consider the case where the initial fiber misalignment
is confined to an ellipse of length / and width w in the (x,, x,) plane, as

FiG. 17. Sketch of initial imperfection. Fiber misalignment ¢ is confined to an ellipse of
length / and width w.
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shown in Figure 17. The axes of the ellipse, (x], x3), are rotated through
an angle, B, about the x; axis with respect to (x,, x,) axes, such that

!’

x}=x,c08 B+x,sin B  and xy = —x,sin B+ x, cos B. (3.47)

In the region outside the ellipse, the fibers are straight and perfectly
aligned in the x,-direction. The fiber misalignment follows a cosine distri-

bution within the elliptical region, as specified by

— v

— =P, Fp<l

3= b, cos = p, i p (3 48)
0, if p=1.

Where

2%\ (202

p= (-—) + (————) . (3.49)

w e

As the band length / — <, the imperfection tends to an infinite band as
described in the previous section. At the other limit of / — 0, the fiber
misalignment vanishes and the compressive strength o, approaches the
Rosen value of o, = G, where G is the in-plane shear modulus of
the composite. These limits provide a useful check to our finite
element calculations.

A finite element mesh of the unidirectional composite was constructed
of six-noded triangular elements with three degrees of freedom at each
node (two in-plane displacements and one rotation along the normal to the
plane of deformation). Full details can be found in Fleck and Shu (1995).
The mesh was loaded parallel to the fiber direction by applying uniform
end displacements 7, and the finite element calculation gives the corre-
sponding remote stress o .

A typical plot of the average remote stress o® versus the end shorten-
ing u? is given in Figure 18 for the inclination 8 = 0°(n = 3, ¢,/ Y, =4
w/d = 20, //d = 50). The response is almost linear with a sharp snap-
back behavior at maximum load. Since we focus our attention on the
initiation and early propagation of a microbuckle, the calculation of the
post-buckling response was stopped when the load dropped to about 75%
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Fic. 18. Remote stress o versus end displacement u7 response for a finite imperfection
of B=0° //d=50,n=3and ¢,/7y, = 4.

of the maximum load. The severe snap-back response of Figure 18 is due
to the fact that the mesh is long in the fiber direction (4000d). The snap
back is more severe than in the infinite band case, as the fibers surround-
ing the finite imperfection remain almost straight at maximum load.
Numerical experimentation showed that the weakest orientation is 8 = (°,
as found previously for the infinite band limit by Budiansky and Fleck
(1993) employing kinking theory, and by Fleck et al. (1995b) employing
couple stress theory.

The progressive nature of the collapse is exhibited in Figure 19 in the
form of contours of total fiber rotation ¢,, for the three stages of loading
A-C shown in Figure 18. State A is the initial unloaded configuration with
¢ =0 and ¢, = ¢; state B is immediately post-maximum load (99.7% of
maximum load); and state C is at 78% of maximum load. We note that
state B, at just past maximum load, displays:

(i) a relatively small maximum value of fiber rotation ¢ = ¢, — ¢. The
maximum fiber rotation is ¢ = 4.4° for the case B = 0°.
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FiG. 19. Contours of total fiber rotation ¢, (in degrees) at the three stages marked A, B
and C in Fig. 18 for B = 0°. Remote stresses at stages B and C are respectively 99.7% and
78.2% of the maximum load. The shape of the deformed fibers at state C is included at the
bottom of the figure.
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(ii) a spatially small region of fiber rotation. At maximum load the
region over which the total fiber rotation exceeds 0.5° is only 704,
i.e. 2.3% of the width of the mesh.

Two versions of the finite element code were written: in version I the
phenomenon of “fiber lock-up” was neglected and large compressive
transverse strains were allowed to accumulate within the microbuckle
band. Experimental observations of microbuckle bands suggests that volu-
metric lock-up occurs such that the transverse strain does not become
strongly negative. (A useful indicator of the magnitude of the transverse
strain is given by (3.17a), from the infinite band calculation.) In version II
of the finite element program, fiber lock-up is included, and the constitu-
tive response is taken to be elastic when the transverse strain becomes
negative. Both versions of the finite element code revealed that the
microbuckle grew initially at an orientation 8 = 0°: the microbuckle band
initially propagates in the transverse x, direction. In version I of the code,
large, compressive transverse strains (of order 5%) accompanied trans-
verse propagation of the microbuckle. In version 11, fiber lock-up occurred
and the direction of propagation of the microbuckle increased to realistic
values of order 20°. Typical results for the orientation of a growing
microbuckle from an initial small-defect oriented one at 8 = 0° is shown
in Figure 20, by using the “fiber lock-up” version II of the finite element
code. In parallel studies, Kyriakides et al. (1995) and Sutcliffe and Fleck
(1996) modelled the tip region of a propagating microbuckle by alternating
layers of fibers and matrix. The microbuckle was observed to propagate in
a similar manner to that of an inclined mode II crack at an inclined angle
B = 5-30°, depending upon the strain-hardening exponent »n and the
shear-yield strain vy, of the composite.

The effect upon the collapse strength o, of the initial length / and
orientation B of the imperfection, is shown in Figure 21 (page 92). As the
length / increases from zero to infinity, the collapse strength decreases
from the elastic bifurcation strength o, = G given by Rosen (1965) to the
infinite band result given by Fleck et al. (1995b). The collapse strength is
mid-way between the elastic bifurcation value and the infinite band value
at a “transition length” //d = 20. For /> 0, the strength decreases with-
increasing magnitude of initial misalignment ¢, and with increasing strain-
hardening index n.
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Fic. 20. Evolution of an in-plane microbuckle from an initial circular imperfection of
diameter 10d, and ¢, = 5°. The effect of volumetric lock-up is included in the constitutive
law from the composite. Note that the microbuckle grows to a steady-state orientation of
about 17°.
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2. Effect of Imperfection Shape on Compressive Strength

The effect of the shape of the region of fiber waviness on compressive
strength has been explored by Shu and Fleck (1996). They considered
three types of initial imperfection, as shown in the insert of Figure 22:

1. Infinite band of width L inclined at 8 = 0.
2. Circle of diameter L.

3. Ellipse of width 204 and length L, oriented at 8 = 0.

All three shapes of imperfection are described by (3.47)—(3.49), with
&,/ vy = 4 (we take yy = 1%, giving ¢, = 2.3°). The compressive strength
as a function of imperfection size of each of the three shapes is shown in
Figure 22, for n = 3. We note that the infinite band prediction is signifi-
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Fic. 21. Compressive strength as a function of the length # of the elliptical region of
fiber misalignment. w/d = 20. The infinite band results are taken from Fleck, Deng, and
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cantly weaker than the other shapes for the L /d values considered. In the
limit of large L /d (greater than about 30 for the infinite band, and greater
than about 300 for the circle and the ellipse) the strengths converge to the
asymptote given by the kinking solution (3.30). It is instructive to compare
the strengths for the ellipse and for the circle at L/d > 20. Then, the
circle circumscribes the ellipse; the circular patch has the larger physical
size but gives less of a stress-concentrating effect than the ellipse. These
two factors compete, and result in the circle being slightly stronger than
the ellipse, for the same value of L /d. The main practical conclusion to
draw from Figure 22 is that compressive strength is significantly influenced
by both the shape of the imperfection, and by the size in relation to the
fiber diameter d.

3. Effect of Multi-Axial Loading upon the Knockdown in Strength for
a Finite Imperfection

The knockdown in compressive strength due to in-plane shear and
transverse tension has been calculated by Shu and Fleck (1996) for the
case of a circular patch of waviness, of diameter L = 20d. Contours of
compressive strength are plotted in Figure 23 for the case »n = 100. The
contours are approximately straight lines of constant spacing, suggesting
that the knockdown in strength can be given by the following analytical
formula:

x< x

O, T T
~1~-0.8— —0.1— (3.50)
Oco Ty Ty

where o, is the compressive strength in the absence of in-plane shear
stress and transverse stress. The knockdown in strength for an infinite
band is given by (3.46). For the case 8 = 20° and R = 2 we have a = 1.24
and (3.46) becomes

x x

125 T T
=1-08— —03— (3.51)

Oco Ty Ty

We conclude that the knockdown effect of shear stress on compressive
strength is the same for the infinite-band case and for the case of a
circular imperfection. The presence of transverse stress causes a greater
reduction in strength for the infinite-band imperfection than for the
circular imperfection.
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FiG. 23. Contour plot of normalized compressive strength of a circular imperfection region
of diameter 204, under general in-plane loading.

IV. Propagation of a Microbuckle in a Unidirectional Composite

So far, we have been concerned primarily with the compressive strength
associated with the initiation of a microbuckle from a region of pre-
existing fiber waviness. In this section we examine the growth of a micro-
buckle in unidirectional material. First, recent experimental findings are
reported on the stable propagation of a microbuckle, and then a
mode I crack propagation model is described in order to model the
propagation response. '

A. EXPERIMENTAL OBSERVATIONS

The investigation of kink-band propagation in fibrous polymer compos-
ites is difficult, since unstable propagation usually occurs as soon as
kinking has initiated. Notched unidirectional carbon-fiber epoxy compos-
ites typically split at the notch ends when loaded along the fiber direction.
Fleck and co-workers (Sivashanker et al., 1995; Fleck et al., 1996) over-
came this problem for edge-notched plates of unidirectional composite by
first nucleating a microbuckle at the root of a starter notch by an
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indentation technique. The specimen was then loaded in axial compression
and stable microbuckle growth was observed in a consistent, repeatable
manner for microbuckle lengths limited only by the ligament width of the
specimen (35 mm for the geometry employed). The specimen geometry is

shown in Figure 24.
Typical plots of remote axial stress versus microbuckle extension are

shown in Figure 25 for three representative carbon fiber composites:

(i) Toray T800 medium strength fibers in a toughened epoxy matrix,
Ciba Geigy 924c.
(ii) Medium strength AS4 fibers in a thermoplastic PEEK matrix, ICI
APC-2, and
(iii) High strength Hercules IMS fibers in a PEEK matrix.

It is clear from Figure 25 (page 97) that there is little effect of
composition upon the collapse response. In each case, out-of-plane mi-
crobuckle propagation occurred, as sketched in Figure 26 (page 98).
Examination of the side face of the specimens after the microbuckle had
grown about 15 mm revealed that the microbuckle grew in a crack-like
manner: the width of the microbuckle increased roughly as the square root
of distance back from the microbuckle tip, see Figure 27 (page 99). A
typical view of the microbuckle tip in the T800-924c material is given in
Figure 28 (page 99): the SEM micrograph shows progressive broadening of
the flanks of the microbuckle with increasing distance back from the
microbuckle tip. If the microbuckle growth were to occur in a dislocation-
like fashion, then one would expect the width of the microbuckle band to
be constant. For the case of IM8-PEEK, the fibers are sufficiently strong
for no fiber fracture to accompany microbuckling, Moran et al. (1995) and
Fleck et al. (1996). The T800 and AS4 fibers are weaker and undergo fiber
fracture within the microbuckle band. Figure 28 shows that the number of
microbuckles increases with increasing distance back from the tip of the
microbuckle, but the average width w of each individual kink band is
constant at 15-25d. The phenomenon of multiple kinking in the wake of a
growing microbuckle is the same phenomenon as steady-state band broad-
ening for an infinite microbuckle band. Strain gauges were placed along
the trajectory of microbuckle propagation in the edge-notch tests and were
used to measure the compressive stress across the flanks of the mi-
crobuckle. The results are summarized in Figure 29 (page 100). For all
three materials, band broadening is observed to occur at a constant value
of bridging stress of about 100 MPa across the flanks of the microbuckle.
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Fic. 24. 3 mm thick edge-notched unidirectional specimens for measurement of -
microbuckle propagation. The 15 mm notch is indented in order to nucleate a microbuckle of
length about 2 mm. Anti-buckling guides, lubricated with PTFE spray, prevent Euler
macrobuckling of the specimen.
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Fic. 25. Typical plots of remote axial stress versus microbuckle extension for unidirec-
tional composites.

Note that the magnitude of the steady-state bridging stress in the wake of
the microbuckle is approximately equal to twice the shear yield strength of
the materials (7, = 60 MPa), in agreement with the estimate for the
band-broadening stress at high » and B = 20 — 30° as shown in Fig-
ure 16.

B. THEORETICAL PREDICTIONS

The observation that a microbuckle propagates in a crack-like manner
rather than in a dislocation-like manner suggests that a crack-bridging line
model can be used to estimate the relation between applied stress and
microbuckle length. The out-of-plane microbuckle development in the thin
composite plate is reminiscent of the cracking behavior of thin metallic
plates under mode 1 tension: an inclined crack forms with out-of-plane
displacements close to the crack tip and a mode I displacement field forms
farther from the crack tip. A pragmatic approach for the microbuckling
problem is to treat the microbuckle as an overlapping mode I crack. The
infinite band response of remote stress o™ versus shortening A can be
used to provide the crack-traction versus crack-overlap displacement law in
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FiG. 26. Sketch showing out-of-plane microbuckle growth in unidirectional carbon fiber
composite specimens (cf Fig. 24) under axial loading.

T

a mode I cohesive zone at the crack tip. Outside the cohesive zone, the
cracked structure is treated as a linear, elastic orthotropic solid. A typical
plot of o* versus A is repeated in Figure 30 (page 101): the stress peaks
at the Rosen value o = G for the case of vanishing initial imperfection,
and o” rapidly falls to the steady-state band-broadening stress o, as
discussed in Section III. We use the infinite band o™ versus A response
as the non-linear spring law for the cohesive zone at the crack tip. The
analysis is simplified considerably by partitioning the area under the o~
versus A curve into two parts: (i) the area below the line o = o, and (i)
a finite remainder, termed G,;,. This partitioning allows us to treat the
propagating microbuckle as a crack carrying a constant bridging stress o,
along its flanks, with a mode I tip toughness G,;,, as depicted in the insert
of Figure 31 (page 102). (A similar strategy has been adopted by Palmer
and Rice (1973) in the study of mode II shear faults in soils and rocks).
The tip toughness G,;, has been calculated using the finite strain
couple-stress code of Fleck and Shu (1995), which has already been
outlined in Section III.C. Numerical experimentation shows that the non-
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FiG. 27. The crack-like nature of microbuckle growth in carbon fiber composites.
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Loading
Direction

g e
(4

T £4 HEH :

Fic. 28. Side view of microbuckle tip region of T800-924c composite. Near the tip of the
microbuckle, two planes of fiber fracture are evident and a single kink band is formed. With
increasing distance back from the microbuckle tip, the number of parallel fracture planes
increases: multiple kink bands are formed.
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F1G. 29. The number of individual kink bands within the overall microbuckle band as a
function of distance from the tip of the microbuckle. Unidirectional composite made from
T800 carbon fibers in a 924c¢ epoxy matrix.

dimensional group G,;,/d /7y E, is only weakly dependent on the value
of the strain-hardening exponent n and to the ratio of longitudinal
modulus E; to shear yield strength 7, . Typical results are shown in Figure
32 (page 103) for B = 30°. For rough design calculations we may state that
G,,/dy1yE, =03 —0.5.

1. Comparison of Mode I Model with Experimental Data

Sivashanker et al. (1995) and Fleck et al. (1996) have implemented the
above fracture mechanics model in order to compare the predicted re-
sponse of microbuckle length in terms of applied stress with the observed
behavior for their edge-notched panels, described in Section IV.A above.
They made use of existing calibrations for the mode I stress intensity
factor and crack-opening profile for an orthotropic edge-cracked strip as -
laid down by Bao et al. (1992) and Wu and Carlsson (1991). Representative
results for the AS4-PEEK material are presented in Figure 33a, page 104.
The value of the applied stress at the onset of microbuckle growth was
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Fic. 30. Estimate of the bridging stresses across a propagating microbuckle in three
carbon fiber composites. Wire resistance strain gauges were placed about 1.5 mm from the
plane of trajectory of the microbuckle, and the strain was recorded with increasing mi-
crobuckle extension past the gauge. The gauge stress was estimated by multiplying the axial
strain detected by the gauge by the longitudinal modulus of the composite (thereby neglecting
the small Poisson ratio effect).

used to estimate the tip toughness G,;, = 20.0 kJm~? (corresponding to a
compressive mode I stress intensity of 30.3 MPaVm ). Strain gauge mea-
surements of the bridging stress across the flanks of the microbuckle
indicated o, = 100 MPa. With these assumed values for G,;, and for o,,
the crack model gave good agreement with the observed dependence of
microbuckle length upon applied stress; see Figure 33a. An additional
comparison can be made between model and experiment, by comparing
the predicted width of microbuckle band with the observed profile. Kinking
theory suggests that the crack overlap displacement § due to fiber rotation
to lock-up of ¢ = 23 within a band of width w and inclination 3 is given
by

d=w(l —cos2B) 4.1)

Thus, the width of the microbuckle band may be estimated from the
predicted mode I displacement profile 6 behind the crack tip of the crack
model, and by converting these values to a profile in w via (4.1). The
comparison is shown in Figure 33b. Again, good agreement is observed in
firm support of the simple mode I crack model of microbuckle propagation
in preference to a dislocation model. Similar agreement is observed for the
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FiG. 31. Sketch of the infinite band collapse response, assuming zero initial imperfection.
The collapse response is calculated by couple stress theory. The area under the curve is split
into a rectangular region under the line 0 = o, and a remaining area designated G,;,. This
suggests a mode I crack model, with a constant bridging stress of o, and a tip toughness

G,;p» as shown in the insert of the figure.

other two materials tested by Fleck ez al. (1996): T800-924c and IMS8-PEEK
unidirectional composites.

Fleck et al. (1996) and Sutcliffe and Fleck (1996) have measured G,;, for
the T800-924c, AS4-Peek, and IM8-PEEK unidirectional composites using
the experimental procedure described above. They find that G,;,/d /7y E/
lies in the range 0.5—1.1, which exceeds the predicted values by a factor of
about two. The discrepancy between the predictions of the elastic crack-line
model and experimental data has been discussed by Sutcliffe and Fleck
(1996). In brief, the microbuckle tip is surrounded by a plastic zone and
the coupling of shear tractions to normal tractions on the microbuckle is
significantly different from that predicted by the crack model. We conclude
that the cohesive zone approach, based on the infinite band response,
provides a useful but approximate estimate of the manner by which a
microbuckle propagates in unidirectional material. A two-dimensional
analysis of microbuckle propagation is more satisfactory but more cumber-
some (Sutcliffe and Fleck, 1996).
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FiG. 32. Calculated tip toughness G,

V. The Notched Strength of Multi-Axial Composites

Microbuckle initiation and growth in multi-directional composites is
much less understood than microbuckle development in unidirectional
material. Failure is dominated by microbuckle initiation and growth in the
load bearing 0° plies. To a first approximation, the compressive failure
strain of unnotched multi-directional laminates is the same as for unidirec-
tional material, and so laminate plate theory can be used to estimate the
compressive strength (Soutis er al., 1993). This is consistent with the
observation that the compressive strength is set by microbuckle initiation
from a local region of fiber misalignment in the 0° plies. Further work is
required to explore experimentally and theoretically the effect of fiber
lay-up on the initiation strength.

A more difficult but highly practical problem is the prediction of
compressive strength for multi-directional panels containing notches, such
as holes. Composite panels contain holes, either by design (holes for
‘fasteners, inspection holes, etc.) or by accident (service or battle damage).
The effect of transverse impact on a composite plate is to induce a region
of extensive damage in the form of fiber fracture, microbuckling, and
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FiG. 33. Comparison of measured and predicted microbuckle growth in AS4-PEEK
material. (a) Remote stress versus microbuckle length. (b) Measured width of microbuckle
band for a microbuckle which has grown 14 mm from the notch root.
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delamination. One approach is to neglect the load-carrying capacity of this
damage region and to treat it as a hole in the panel.

It is observed experimentally that failure from a hole in a multi-
directional composite plate under compression is by microbuckle nucle-
ation at the edge of the hole (Soutis et al., 1993). The local axial stress at
the hole edge for microbuckle nucleation is found to be approximately
equal to the compressive strength of an unnotched multi-directional speci-
men. This suggests that a cohesive zone model may be used to predict
microbuckle initiation, with a peak value of bridging stress equal to the
unnotched strength of the multi-directional material. With increasing
remote load, the microbuckle grows from the hole edge, first in a stable
manner and then unstable at peak load. A crack-bridging model has been
developed as a useful engineering tool for prediction of notched compres-
sive strength. The model is described in the following section, and repre-
sentative predictions are summarized. The model has been incorporated in
PC-driven software to predict notched strength for a wide range of
geometries and fiber architectures (Xin et al., 1995).

A. LARGE-SCALE CRACK-BRIDGING MODEL

Soutis et al. (1991b) have developed a crack-bridging model for the
initiation and growth of compressive damage from the edge of a blunt
notch such as a hole. The damage zone is simulated by a compressive
mode I crack with a cohesive zone ahead of its tip.

Consider compressive failure of a finite width, multi-directional compos-
ite panel, which contains a central circular hole. It is assumed that
microbuckling initiates when the local compressive stress parallel to the 0°
fibers at the hole edge equals the un-notched strength of the laminate o, ,
that is

ktaw = Uun’ (4.2)

where k, is the stress concentration factor and o* 1is the remote
axial stress.

Damage development by microbuckling of the 0° plies, delamination,
and damage by plastic deformation in the off-axis plies is represented by a
crack with a cohesive zone at its tip; see Figure 34. For the sake of
simplicity, a linearly softening spring law is taken for the cohesive zone:
the crack-bridging normal traction 7 assumed to decrease linearly with
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F1G. 34. Cohesive zone model for microbuckling of multi-directional composites.

increasing crack-face overlap 2v from a maximum value (equal to the
un-notched compressive strength o, of the composite) to zero at a critical
crack-face overlap of 2v,. The cohesive zone is assumed to remove any
singularity from the crack tip and stresses remain bounded everywhere. It
is assumed that the length / of the equivalent crack represents the length
of the microbuckle. When the remote load is increased, the equivalent
crack grows in length, thus representing microbuckle growth. The evolu-
tion of microbuckling is determined by requiring that the total stress
intensity factor at the tip of the equivalent crack X,,, equals zero,

K, =K +K;=0, (4.3)

tot

where K~ is the stress intensity factor due to the remote stress o, and
K is the stress intensity factor due to the local bridging traction T across
the faces of the equivalent crack. When this condition is satisfied, stresses
remain finite everywhere.

The equivalent crack length # from the circular hole is deduced as a
function of remote stress o~ using the following algorithm. For an
assumed length of equivalent crack /, we solve for ¢ and for the -
crack-bridging tractions by matching the crack-opening profile from the
crack-bridging law to the crack profile deduced from the elastic solution
for a cracked body. The cracked body is subjected to a remote stress o~
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and crack-face tractions 7. At a critical length of equivalent crack, Z,,,
the remote stress o attains a maximum value, o,, and catastrophic

failure occurs.

1. Input Parameters for the Model

The model contains two parameters which are measured independently
from specimens made from the same material and same lay-up: the un-
notched strength o, and the area G. under the assumed linear traction-
crack displacement curve. o;, is measured from a compression test on the
un-notched multi-directional laminate, and G, is measured from a com-
pressive fracture toughness test. The concept of compressive fracture tough-
ness may be explained as follows. Consider a finite specimen containing a
single crack, with a cohesive zone at the crack tip. The cohesive zone is
assumed to be much smaller than other in-plane dimensions. Then, stresses
decay remotely with radius r from the crack tip as r~!/?, characterized by
the remote mode I stress intensity factor, K. A cohesive zone exists at the
crack tip such that the total stress intensity factor at the tip of the cohesive
zone vanishes. Rice (1968) has shown that the work done to advance the
crack by unit area G, equals the area under the crack traction versus
crack-opening displacement curve,

GC=2fVCO'(v)dv=o;mvc, (4.4)
0

where 2v, is the critical crack-closing displacement on the crack
traction—crack displacement curve, as shown in Figure 34. For an
orthotropic plate in plane stress, the fracture energy G, is related to K,
by (Paris and Sih, 1969)

1/2

1 E E..
G = + — Yy KC?' (4.5)

° J2E.E, |V E, " 26,

where E and G are the laminate in-plane extensional and shear moduli,
respectively, and v is Poisson’s ratio in the reference system shown in
Figure 34. This is analogous to the fracture mechanics relationship for an
isotropic elastic plate in plane stress, G, = K2/E.

We assume that the toughness G, represents the total energy dissipated
by fiber microbuckling, matrix plasticity in the off-axis plies, and by
delamination. The compressive toughness G, of a laminate may be mea-
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sured by performing a compressive fracture toughness test to measure K,
and then by using (4.5). The compressive fracture toughness concept is
meaningful provided the damage zone at the onset of crack advance is
much smaller than other specimen dimensions. Also, the crack faces much
not interfere at distances remote from the crack tip.

2. Application of the Model

The approach has been applied to a wide range of specimen geometries
(Sutcliffe and Fleck, 1993), and has been used to examine the effect of
fiber architecture upon notched strength of carbon fiber laminates (Soutis
et al., 1993). Additional tests have been performed on 2-D- and 3-D-woven
composites, on woods, and on plywood. In each of these cases, the model
adequately predicts the compressive strength and the corresponding mi-
crobuckle length at maximum load. As an example, results are presented
for [(+45,0,);]¢ panels made from T800-924C and AS4-PEEK carbon
fiber composites. The typical damage state immediately prior to failure is
shown in Figure 35a for an AS4-PEEK specimen. (The T800-924c failed in
a qualitatively similar manner.) Microbuckles initiate from the edge of the
hole in both the 0° and 45° plies; some splitting of the 0° plies and
delamination between the 0° plies and the 45° plies are also apparent.

The evolution of microbuckle length with remote, applied stress was
monitored periodically by interrupting a test and X-raying the specimen: a
typical response showing initial stable microbuckle development prior to
catastrophic failure is given in Figure 35b. The predicted response by the
Soutis et al. (1991b) model is included in the figure and is in good
agreement with the observed initiation and growth of a microbuckle. The
model slightly underestimates the stress for initiation of a microbuckle
but accurately predicts both the maximum load and the associated
microbuckle length.

The notched strength o, of the T800-924C material is compared with
that of the AS4-PEEK material in Figure 35c. Again, predictions of the

*Fi1G. 35. (a) Dye penetrant enhanced X-ray micrograph of [(£45,0,);]s AS4-PEEK
laminate, with 10 mm diameter central hole. (b) Comparison of the predictions of the Soutis
et al. (1993) model with the observed growth of a microbuckle from a 5 mm central hole in a
([45,0,);]s AS4-PEEK laminate. (c) Comparison of the measured and predicted compressive
strengths g, for [(+45,0,);]; AS4-PEEK and T800-924c laminates. The panels are of width
w = 50 mm wide, and the notch strength is plotted as a function of hole radius R. The
theoretical predictions—are given by the Soutis et al. (1993) model.
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Soutis et al. (1993) theory are included in the figure: excellent agreement is
found between theory and experiment for both materials. The AS4-PEEK
material has a higher compressive fracture toughness (K, = 55 MPa ym)
than the T800-924C laminate (K, = 46 MPa Vm ) and is less notch sensi-
tive. The notched strengths of both materials lie between the limits of
notch insensitivity (where the net-section failure stress equals the un-
notched strength) and the perfectly brittle limit (where the local stress at
the root of the notch equals the un-notched strength).

The cohesive zone model of Soutis et al. (1991b) has proved to be a
useful engineering approach to compressive failure of notched, multi-
directional laminates. However, further work is required in order to
relate the failure toughness of a multi-directional laminate to that of
unidirectional material, as described in Section IV.B.

V1. Directions for Future Research

A number of important problems remain in order to complete our
understanding of the compressive failure of fiber composites. Some of
these topics are listed below.

1. Dynamic Microbuckling

Lankford (1989, 1991, 1994) has measured the compressive strength of a
range of ceramic matrix and polymer matrix composites, and has observed
a sharp increase in strength with increasing strain rate, at strain rates
above about 300 s~!. Slaughter et al. (1996) have analyzed the response of
a fiber composite to a suddenly applied stress pulse; they include the
effects of material inertia and initial imperfection, and perform a one-
dimensional infinite band calculation using couple-stress theory. The more
realistic calculation of a suddenly applied pulse in velocity to the end of
the specimen, remains to be addressed. Dynamic kinking is an important
topic as structural composites are commonly subjected to shock loading,

particularly in military and sports applications.

2.  Microbuckling from Random Waviness

In practice, fiber misalignment exists as a random three-dimensional
distribution throughout the composite. The compressive strength is deter-
mined by some combination of the magnitude of the fiber misalignment
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and its physical size. Work remains to be done on the statistical characteri-
zation of waviness and its implications for the distribution in compressive
strength for an ensemble of composite parts. A similar strategy of reliabil-
ity analysis exists for the imperfection-sensitive buckling of shell struc-
tures, for the tensile failure of ceramics using Weibull statistics, and for
the fracture of brittle solids using probabilistic fracture mechanics. It is
envisaged that a defect assessment can be made of composite parts in
terms of the measured distribution of imperfections such as fiber misalign-
ment. '

3. Microbuckling from Defects Such As Voids

Compressive failure of fiber composites occurs from holes and voids, as
well as from regions of fiber waviness. The presence of matrix voids is
difficult to avoid in composite manufacture. A large cylindrical hole
reduced the compressive strength by a factor of about three, depending on
the degree of orthotropy. In the other limit of vanishing hole size in
relation to fiber diameter d, no reduction in strength occurs. Thus, a
significant hole size effect is expected for small holes. Preliminary data
showing the effect is presented in Figure 36: tests were performed on
unidirectional specimens of T800-924c carbon fiber—epoxy composite con-
taining holes of diameter in the range 0.3-2 mm. Microbuckling occurred
from the hole and led to failure in some of the cases. In other, nominally
identical specimens, splitting occurred from the edge of the hole, thereby
reducing the stress-concentrating effect of the hole. In general, the speci-
mens which displayed splitting were stronger than the specimens for which
splitting is absent; see Figure 36. Further experimental and theoretical
work is needed to determine the relation between hole and void size and
compressive strength.

4. Tunnelling of Microbuckles in Multi-Directional Composites

Recent observations of microbuckle propagation in multi-directional
laminates (Fleck et al., 1996) suggested that microbuckles grow in the 0°
plies of thick composites by a tunnelling mechanism, as sketched in Fig-
ure 37. When the microbuckle is sufficiently long, it advances under
constant applied stress, termed the “tunnelling stress.” The phenomenon
of crack tunnelling has been described in detail by Hutchinson and Suo
(1992). For the case of tunnel microbuckling, the tunnelling process
involves the combination of microbuckling of the 0° plies and mixed-mode
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delamination between 0° plies and adjacent off-axis plies. Calculations
remain to be done on the magnitude of the tunnelling stress as a function
of layer thickness and the delamination toughness.
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