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I. Introduction

Dislocation theory suggests that the plastic flow strength of a solid
depends on strain gradients in addition to strains. Hardening is due to the
combined presence of geometrically necessary dislocations associated with
a plastic strain gradient and statistically stored dislocations associated with
plastic strain. In general, strain gradients are inversely proportional to the
length scale over which plastic deformations occur. Thus, gradient effects
become important for plastic deformations taking place at small scales.
Experimental evidence suggests that flow strength increases with diminish-
ing size, at length scales on the order of several microns or less. Phe-
nomenological theories of strain gradient plasticity are proposed in this
article as formulations which have either a deformation or flow theory
character. The theories are intended for applications to materials and
multilayers, both engineered and natural, whose dimensions controlling
plastic deformation fall roughly within the range from a tenth of a micron
to ten microns. Problems in this range of length scales generally have
sufficiently large numbers of dislocations that a continuum approach is
essential for quantitative modelling. At even smaller scales, problems tend
to fall into the class where dislocations must be treated as discrete entities.
At length scales above several microns, conventional plasticity theories
which neglect gradient effects usually suffice.

The most general versions of the theories proposed here fit within the
Toupin-Mindlin strain gradient framework, which involves all components
of the strain gradient tensor and work-conjugate higher-order stresses in
the form of couple stresses and double stresses. A specialized version deals
with only a subset of the strain gradient tensor in the form of deformation
curvatures (i.e., rotation gradients); this is the simpler couple stress frame-
work. To motivate the entire approach, a survey of size-dependent phe-
nomena in plasticity is presented early in the article in Section II. The
phenomena are interpreted in terms of the phenomenological deformation
theory of strain gradient plasticity. The review covers size effects noted in
the torsion of thin wires, indentation tests, the macroscopic strengthening
of metal matrix composites due to rigid particles, and the role of strain
gradients in influencing both the growth of micron-sized voids and the
stresses at the tip of a sharp crack. Emphasis in this review is on
highlighting potential applications of strain gradient plasticity and on
identifying possible experiments for validating and calibrating the theory.
A strain gradient theory of single crystal plasticity is outlined in the final

- ¢
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section. Possible applications of the single-crystal theory are discussed, as
are its implications for the phenomenological theories on which most of
the developments in the article rest.

Experimental evidence is accruing for the existence of a strong size
effect in the plastic flow of metals and ceramics. For example, the
measured indentation hardness of metals and ceramics increases by a
factor of about two as the width of the indent is decreased from about 10
um to 1 um as seen for one set of data in Figure 1 (Stelmashenko et al.,
1993; Ma and Clarke, 1995; Poole et al., 1996). The scaled shear strength
of copper wires in torsion in Figure 2(a) increases with diminishing wire
diameter in the range 100 um to 10 wm by almost a factor of three (Fleck
et al., 1994), while data for the uniaxial tensile behavior of the wires, for
which gradients are absent, show essentially no size effect (see Fig-
ure 2(b)). The well-known Hall-Petch effect states that the yield strength
of pure metals increases with diminishing grain size. Long-standing obser-
vations of shear bands in metals have revealed that micro-shear band
widths appear to be consistently on the order of a micron. Simple dimen-
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FiG. 1. Effect of indent size upon indentation hardness for tungsten single crystals (the
data are taken from Stelmashenko ef al, 1993). The indent size is characterized by the
diagonal of the indent from a Vickers micro-indenter (four-sided pyramid). A minor effect of

crystal orientation on hardness is evident.
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FIG. 2. a) Torsional response of copper wires of diameter 24 in the range 12 um to 170
wm. Both the torque Q and the twist per unit length « are scaled by the wire radius a. If the
constitutive law were independent of strain gradients, the plots of normalized torque Q/a*
versus ka would all lie on the same curve. b) True stress o versus logarithmic strain &
tension data for copper wires of diameter 2 in the range 12 pum to 170 um. There is a
negligible effect of wire diameter on the behavior.
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sional arguments lead to the conclusion that any continuum theory for
each of these phenomena based solely on strain hardening, with no strain
gradient dependence, would necessarily predict an absence of any such
size effect.

In each of these cases it is thought that the size effect is associated with
the presence of a large spatial gradient of strain which requires the storage
of geometrically necessary dislocations, as discussed by Ashby (1970). The
main physical arguments for a size effect within the context of continuum
plasticity have already been presented by Fleck and Hutchinson (1993) and
Fleck et al. (1994), and only a brief summary is presented here. The
underlying idea is that material flow strength is controlled by the total
density of dislocations which have been stored. Attention is directed to
distributions of large numbers of dislocations, and not with individual
dislocation interactions. Dislocations are stored for two reasons:

(1) In principle, a single crystal strained uniformly need not store
dislocations, but dislocations do accumulate by random trapping.
These are referred to as statistically stored dislocations or geometri-
cally redundant dislocations (Ashby, 1970, 1971). As yet, there is no
simple theory to predict the density pg of these dislocations as a
function of strain, though the dependence has been measured by
numerous investigators (see, for example, Basinski and Basinski,
1966).

(ii) When a crystal is subjected to nearly any gradient of plastic strain,
geometrically necessary dislocations must be stored. Plastic strain
gradients appear either because of the geometry of the solid (e.g.,
near the tip of a crack) or because the material itself is plastically
inhomogeneous (containing non-deforming phases, for instance).
The density of the geometrically necessary dislocations can be
calculated if the gradient of plastic slip on crystal planes is known, as
is explained more fully in Section V below.

Consider examples in which each type of dislocation storage mechanism
operates. First, in the uniaxial straining of a metallic single-crystal bar,
plastic strain is macroscopically uniform and hardening is due to the
random trapping of statistically stored dislocations. The dislocations are
trapped as dipoles with short range stress fields. These dipoles act as a
forest of sessile dislocations, and strain hardening is associated with the
elevation of the macroscopic flow stress required to cut the dipoles by
subsequent glide dislocations. Second, the plastic bending of an initially
straight single-crystal beam to a macroscopic curvature  requires the
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storage of a uniform density p; = |k|/b of geometrically necessary edge
dislocations, where b is the Burgers vector of the dislocations (Nye, 1953).
One such dislocation distribution giving rise to the curvature is shown in
Figure 3. Since |«/| is the magnitude of the plastic gradient across of the
height of the beam, p; scales linearly with the imposed plastic-strain
gradient. The density of these geometrically necessary dislocations can be
measured directly via the lattice curvature (see Ashby, 1970; Russel and
Ashby, 1970; Brown and Stobbs, 1976). These dislocations provide addi-
tional macroscopic strengthening caused by short-range interaction, e.g.,
when they are cut by glide dislocations a jog must be created. The energy
barrier for jog formation shows up as an elevation in the macroscopic
flow strength.

In order to define p; precisely for the case of a single-slip system we
assume that slip occurs in a direction s aligned with the x,-axis, and the
normal to the slip plane m is along the x, axis. Thus, the Burger’s vector b
of dislocations inducing the slip is co-directional with s. A gradient of slip
dy/dx, gives rise to a density

1 oy
b dx,

of geometrically necessary edge dislocations lying along the x,-direction.
Likewise, a gradient of slip dy/dx; gives rise to a density

1 oy

b dx,

N Y

FiG. 3. Dislocation distribution in bending of a crystal with two symmetric slip systems.
The density of geometrically necessary dislocations pg is related to the curvature x of the
beam and to the magnitude of Burger’s vector b by p; = |«|/b.
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of screw dislocations lying along the x; direction. Note that a slip gradient
in the direction of the normal m to the slip plane requires no storage of
dislocations.

It is assumed that the flow strength for a single-slip system of a single
crystal depends upon the sum of the densities of statistically stored
dislocations, pg, and geometrically necessary dislocations, p;. The sim-
plest possible dimensionally correct relationship between the flow strength
7, on the slip plane and total dislocation density is

y
7, = CGby/ps + pg 1.1

where G is the shear modulus, b is the magnitude of the Burger’s vector
and C is a constant taken to be 0.3 by Ashby (1970). The contribution to
flow strength from the Peierls-Nabarro or lattice-friction stress has been
dropped from (1.1) as we shall focus on applications where strain harden-
ing dominates material response. Other couplings between ps and p; are
possible; equation (1.1) gives one particular form of the non-linear interac-
tion between flow strength 7, and dislocation densities pg and pg.
Subsequently, this functional relationship will be modified in order to
develop a phenomenological theory which fits more comfortably within the
established general framework of plasticity theory.

To provide an article which is accessible to as wide a range of readers as
possible, we have postponed the full development of strain gradient
plasticity theory to Sections III and IV of the article. Section II, which
follows, is intended as a self-contained review of the current status of
strain gradient theory as it applies to a number of important plasticity
phenomena at small scales. To begin the review, it is first necessary for us.
to specify precisely how the strains and strain gradients are introduced into
the phenomenological constitutive models, but all other technical details
of the theory are saved for later sections. A reader whose primary purpose
is to acquire some acquaintance with the applicability of strain gradient
plasticity may want to focus mainly on Section IIL.

II. Survey of Strain Gradient Plasticity: Formulations .
and Phenomena

Higher-order continuum theories of elasticity were promulgated in the
1960s culminating with the major contributions of Koiter (1964), Mindlin
(1964, 1965) and Toupin (1962). Efforts were made to apply the theories to
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predict phenomena for linear elastic solids such as stress concentration at
holes (Mindlin, 1963), crack-tip stresses (Eringen, 1968; Sternberg and
Muki, 1967), bending stiffness of thin beams (Koiter, 1964), and stresses at
free surfaces (Mindlin, 1965). No experimental corroboration of these
theories was achieved, and in due course it was generally accepted that the
phenomena being addressed in these works should be expected to come
into play only at scales comparable to atomic lattice spacing. Specifically,
Koiter’s (1964) argument prevailed to the effect that there is no reason to
expect gradient effects to alter the elastic bending stiffness of a single
crystal beam until its thickness approaches atomic dimensions.

Higher-order effects can be expected to come into play in conventional
linear elastic solids when the representative length scale L of the deforma-
tion field becomes comparable to a micro-structural length scale (Mindlin,
1964). As an example, a higher-order approach has been applied to the
propagation of waves through layered media (Sun et al., 1968). When the
wavelength is very long compared to the thickness of the layers, conven-
tional theory using appropriate composite averages of the layer moduli and
densities can be used to describe the wave. However, for wavelengths
which begin to approach the thickness of the layers, higher-order theories
have been derived bringing in the effects of strain gradients on wave
behavior. Similarly, polycrystalline solids with anisotropic grains or elastic
solids reinforced by a population of stiff particles can be expected to
display behaviors which depart from predictions of conventional elasticity
theory based on the concept of composite moduli when the characteristic
length scale of the overall deformation field L begins to approach the
grain size or particle spacing. There have been several studies directed to
such problems with the aim of providing higher-order strain gradient
constitutive relations for conventional linear elastic solids with micro-
structure (e.g., Zuiker and Dvorak, 1994; Drugan and Willis, 1996
for materials reinforced by spherical particles, and Bardenhagen and
Triantafyllidis, 1996 for multi-phase media). Complementing this theoreti-
cal work are the experiments by Kakunai er al. (1985) on polycrystalline
aluminium beams with equiaxed grains showing a small but systematic
increase in the scaled elastic-bending stiffness as the thickness of the
beams is reduced from about sixty to three grain diameters.

While gradient effects in an elastic single crystal of pure metal become
significant only for deformation fields with wavelengths on the order of the
atomic spacing, when plastic deformation occurs, gradient effects can
become important at much larger scales. Examples displaying size effects



Strain Gradient Plasticity 303

in the micron range are seen in Figures 1 and 2. The larger scales in the
plastic range are fundamentally related to dislocation cell micro-structures
which develop with dimensions on the order of sub-microns. Other prob-
lems to be discussed below are the plastic flow strength of particle
reinforced metal-matrix composites, where size effects are expected to
become important at micron particle spacings, and the grain size depen-
dence of yielding in a polycrystal when the grain diameters are in this same
range. In all of these cases, the representative length scale L of the
deformation field sets the magnitude of plastic strain gradients compared
with the magnitude of the average plastic strains. A small representative
length scale implies the presence of large strain gradients relative to
strains, and, consequently, a large density of geometrically necessary
dislocations relative to statistically stored dislocations.

A large body of literature has emerged on the development of non-local
theories for addressing the localization of deformation in dilatant plastic
solids, such as granular materials. In early work it was assumed that the
solid deforms as a Cosserat continuum, whereby the strength depends
upon both strain and the material curvature (Muhlhaus, 1985, 1989; de
Borst, 1993). The Cosserat theory has been extended by Steinmann (1994)
to finite strain; the resulting formulation is complex, largely due to the
problem of defining rotation and curvature at finite deformation. A plastic-
ity version of the Cosserat approach is developed further in Section A
below. It has been recognized that Cosserat theory has little effect on the
stress state during localization in a dilatant plastic solid, as curvatures are
small within the dilating band of concentrated deformation. An alternative
gradient theory has proved popular under these circumstances: this theory
invokes strengthening by the first and second Laplacian of effective strain
(Aifantis, 1984; Zbib and Aifantis, 1989; Muhlhaus and Aifantis, 1991).
The emphasis has been placed on developing robust numerical procedures
for prediction of the width of a localized band of deformation, and
developments of the theory have been to include dynamic effects (Sluys et
al., 1993). It is recalled that conventional constitutive descriptions give a
pathological mesh-size dependence upon localization of deformation.

Under general loading histories, plasticity is intrinsically a path-
dependent phenomenon requiring a non-integrable description which
relates increments of stress-like quantities to increments of strain-like
quantities. Such constitutive theories are referred to collectively as flow
theories. Because of their simpler nature, deformation theories of plasticity
have occupied a prominent position in the development of phenomenolog-
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ical constitutive models. These are generally small strain, nonlinear elastic
constitutive models whose functional form is chosen to reproduce a
representative stress history, such as uniaxial tension, and to be in accord
with selected physical constraints such as incompressibility of plastic flow.
Application of deformation theories is necessarily limited to problems
where path-dependence is not an issue. It is well known, for example, that
predictions of J, deformation theory coincide with those of J, flow theory
for all histories where the stress components increase proportionally
(Budiansky, 1959). None of the problems in the survey which follows has
any important path-dependent behavior, and, therefore, we will discuss
and analyze them within the context of the deformation theories of
strain-gradient plasticity. In addition, large strain effects are not the
dominant feature in any of the problems, and thus the discussion can be
further simplified by restricting attention to small strain deformation
theories.

A. ROTATION GRADIENTS: COUPLE STRESS THEORY

Fleck and Hutchinson (1993) have developed a phenomenological theory
of strain gradient plasticity based on gradients of rotation which fits with
the framework of couple stress theory. This theory is probably the simplest
generalization of conventional isotropic-hardening plasticity theory to in-
clude strain gradient effects. For this reason, we begin by specifying the
strain and strain gradient invariants characterizing the deformation theory
version of this constitutive law. Full details of the flow theory version are
spelled out in Section IV.

The yield strength of the solid is taken to depend upon both strain &
and curvature x. The small strain assumption is adopted, and a Cartesian
reference frame x; is employed. The strain tensor € is related to the
material displacement u via &;; = (4, ; + u; ;)/2, and the curvature x is

4]
the spatial gradient of the material rotation 0:

1
Xip = 0:,p = 5 €kt jp = €ij Ekp, j (2.1)

(Unless otherwise stated, the usual summation convention applies for
repeated indices.) In the. deformation theory version of the theory, the
strain energy density w of an incompressible solid is taken to depend upon
the second, von Mises invariant of strain, ¢, = ‘/ 2¢; ;€ij » and the analo-
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gous second invariant of the curvature, x, = ‘/ 2y i Xij - For the sake of
simplicity, Fleck and Hutchinson (1993) neglected any dependence of w
upon the other quadratic invariant of x given by ‘/ 2y j X;i - Further, they
assumed that w depends only upon the ‘overall effective strain’ quantity
&cs where

&es = \/f>‘e2 +/c2s Xe (2.2)

Here, the material length scale /¢ has been introduced as required for
dimensional consistency, and the subscript ‘CS’ is short for ‘couple stress’
to avoid confusion with other material length scales introduced later.

To assess the sensitivity of predictions to the way in which ¢, and y, are
combined in forming &, solutions will be presented to several problems
using the following generalization of (2.2):

&cs = ["‘;eyL +/cﬂs Xeﬂ]l/” (2.3)

where an additional parameter p has been introduced. There is some
rationale for assuming w = 1, based on the following dislocation argu-
ments. Assume that the flow strength depends upon the total dislocation
density p, = ps + ps, and that p; is linear in the strain gradient as
discussed in Section I. If one further assumes that the density of statisti-
cally stored dislocations pg is linear in von Mises effective strain (stage I
hardening for a single crystal response), then one concludes that an
appropriate scalar measure of hardening is given by (2.3) with u = 1. A
value for u equal to 2 is more attractive on mathematical grounds and can
be rationalized by assuming densities of statistically stored and geometri-
cally necessary dislocations interact such that the total dislocation density
pr is the harmonic sum of pg and pg, i.e. p7 = p7 + p.

B. ROTATION AND STRETCH GRADIENTS:
TOUPIN-MINDLIN THEORY

Couple stress theory is a subset of a more general isotropic-hardening
theory based on all the quadratic invariants of the strain gradients. The
extended theory assumes a dependence on stretch gradients as well as
rotation gradients and fits within the more general framework as laid down
by Toupin (1962) and Mindlin (1964, 1965). Leroy and Molinari (1993)
have extended this framework to include the effects of finite strains.
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The generalized strain variables are the symmetric strain tensor
&;=73(u; j+u; ;) and the second gradient of displacement Mjx =

14

d; Uy = uy ;;, where d; is the forward gradient operator. The work
increment per unit volume of solid due to an arbitrary variation of
displacement u is

oW = 0y, 85, + 7,5 Oy 2.4)

where the symmetric Cauchy stress o; ; 18 the work conjugate of the strain
variation d¢;; and the higher-order stress 7,;, (= 7;,) is the work conju-
gate of the strain gradient variation 8v,; . The higher-order stress tensor is -
composed of components of both couple stresses and double stresses as
will be displayed explicitly in Section III.

A phenomenological isotropic deformation theory version of plasticity is
now developed for the case where the strain energy density w depends
upon both the second-order symmetric strain tensor € and the third-order
strain gradient tensor m. The work statement (2.4) implies that the
second-order symmetric stress o is given by o; j = dw/d¢;; and the
third-order stress 7 is given by 7,;, = dw/dn,; . Toupin (1962) and Mindlin
(1965) considered a general linear isotropic hyper-elastic solid. They showed
that the strain energy density w depends upon € and m in the manner

1

w = 5)18,-,-81-]- + e E A MMk + QM Mk jj

@M i + QM Mijie + AsMipeie (2.5)

where the constants A and u are the standard Lamé constants and the five
a, are additional stiffness constants of dimension stress times length
squared. For the special case of an incompressible solid ¢;;, and 7, j; vanish,
and the above expression for w simplifies to

W = &g + a3y + MM T asmipp i (2.6)

where the superscript (') is introduced to emphasize that the strain
quantities are derived from an incompressible displacement field. We shall
specify the hydrostatic part n of m to be

N = 2 (B Mpp + i Mipp) 2.7
so that nfi = nfi and 5/ = n,;,. The deviatoric part of m follows as
m’' =mn — " Note that m’ is orthogonal to any arbitrary hydrostatic
displacement field 74 such that n': § = 0.
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Now consider the more general case of an incompressible isotropic
non-linear deformation theory solid. Following the strategy of Fleck and
Hutchinson (1993), the strain energy density w for a non-linear elastic solid
is assumed to be a non-linear function of the combined strain quantity &
where

2

g2 = —811 l] + Clnukn”k + Canjknuk + c31’11k77k_n (28)
3

The factor of 2/3 pre-multiplies the &];&;; invariant so that & equals the
von Mises strain invariant ¢, in the case of uniform strain. The precise
dependence of w on &, and the values of the three factors ¢, remain to be
specified. It is convenient at this stage to re-express m' in terms of a
unique orthogonal decomposition introduced by Smyshlyaev and Fleck

(1996). They have shown that m’' may be written as
,nr — ,nr(l) + 1]:(2) + ,'lr(3) ‘ (29)

where n'® : ') =0 for i #j. The three parts '@ are defined as
follows. First, introduce the fully symmetric tensor 'S where

1
e = 3 e + Wi + ] (2.10)

Note that 1’5 has the symmetries o e = 17],“ = ; in addition to the
symmetry in the first two indices 75, e = nﬂi The symmetric triad 1’5 has
ten independent components. The eight components of the remainder
n'“4=m"—n'S can be speciﬁed in terms of the deviatoric part of the

curvature tensor x;; = 0, ; = ze;,,nj,, as follows:
A 'S 2 ' 2 , )
Mk = Mije — Mk = 3 Cikp Xpj T T €jkp Xpi (2.11

'S and 0’4 is an

Note that the decomposition of m’ into the parts m
orthogonal decomposition, i.e., n;jskn{ j’}: = (.
The orthogonal decomposition of m’ into the three tensors m'® is

given by

(1 'S 'S
nl}k) = nljk [ jnkpp kT’ipp + Skinjpp] (212)

1
2) _ ’ ' ’
Mk = [eikpeﬂm"'llpm + €kpCitmMpm + 2Mjx — M — Myl (2.13)
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1 .
1(3) , , . ,
"h']('k = g[—eikpejlmn,pm = €k pCitmMipm + Zn;jk — ’7;1:: - T,kl_].]
1
S Ky Ky ‘
+ -5_[81'1""121712 + GMipp + SiMipp (2.14)

r(n) _

Note that each of the three quantities m'® possess the symmetry Nk
1;,’,(,:' ) and satisfies the incompressibility constraint that n,.’};') vanishes.

The combined strain quantity & can be written in terms of &’ and n'®
by making use of (2.12-2.14) to get, after somewhat lengthy manipulation,

2
2 __ 2, (1) (1) 2_1(2), 1(2) 2, 1(3), 1(3)
& = 36;]-6,-’]- +/11)i'jkn,-'jk +/277i’jk17{jk +/377,-’jk17;jk (2.15)

where

2 2 1 2 3
li=cy+ey, C5=c,— 563 and /; = SC1t e 763 (2.16)
We shall take (2.15) to be the defining relation for &. Note that (2.15)
ensures that & is convex in the strain quantities (g’, q’).

The connection between the general first-order strain gradient theory
involving the three invariants of ') given in (2.15) and couple stress
theory may be stated as follows. In couple stress theory the two curvature
invariants are x;; x;; and y; i X;;- These invariants may be re-expressed in
terms of n'” via (2.1) and (2.12-2.14) to give

3 5
r ot (2) 12 1(3)_ (3
Xij Xij = gni,(-k)ﬂi,(-k) + 16 n,-}k)n,-}k) (2.17)

and
' 3 1(2)_1(2) .« S 1(3).1(3)
Xij Xji = gnijk Mijk F Ténijk Nijk (2.18)

These relations may be inverted to allow us to write

4 ! ! 4 ’ !
§Xij Xij T ':;Xinji
and n,f},z)n{}z) = SXiX;— % Xi; Xji» and thus & in (2.15) can be rewritten in

terms of the three invariants x/; x;;, xj; xj; and n{](-,lc)n{j(.,lc) as

@),.r(2) _
77;"jk "lfjk =

2 4 8 4 8
&= gsfjsz{j +/127'£j('llc)nz(}('llc) + (5/22 + E/3Z)Xi'in’j + ('3‘/22 - §/3Z)Xi'j)(j'i-

(2.19)
It is now readily apparent that the Fleck—Hutchinson couple stress theory

is a special case of (2.19) where the only non-vanishing strain gradient
contribution to & is the curvature invariant X;; X;j- Formally, (2.19) may
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be reduced to the couple stress version (2.2) by taking /, = 0, Z, = 3/¢s

and /; = ‘/;i: Ccs-

In the sequel, results will be presented for a number of problems for
both the special case of the couple stress solid (denoted by CS) and the
more general solid which is dependent on both stretch and rotation
gradients (denoted by SG). Specifically, results will be given for the
following two solids:

1 [5
CSs: /,=0, /,= 5/, ly = N / where /=7
1

~ 5
SG: £, =0, 4=+, /3=\/§/

This brings the notation for the CS solid into coincidence with that used in
the two earlier papers by Fleck and Hutchinson (1993) and Fleck et al.
(1994) Neither of these two solids has a dependence on the second
rotation invariant, x;; xj;, but the effect of this invariant appears to be
relatively unimportant in each case we have investigated.

The above general strain gradient theory will be used in the remainder
of this section to predict material-based size effects in a number of
applications. For simplicity, a power law dependence of the strain energy
density w on the effective strain & will be assumed of the form

(2.20)

n
(2.21)

g (n+1)/n
w =

2og’o(g0

where 3,, &, and the strain-hardening exponent n are taken to be
material constants. For the case of uniaxial terision the uniaxial stress o is
related to the axial strain & by the familiar expression

e 1/n
0"‘:20(’%) .

Additional details on the deformation theory above are given in the
Appendix; the flow theory version is explained in Section IV.

C. PHENOMENA INFLUENCED BY PLASTIC STRAIN GRADIENTS

1. Torsion of Thin Wires

Fleck et al. (1994) performed tension experiments and torsion experi-
ments on pure copper wires whose diameters ranged from 12 pum to 170
pm. The results are summarized in Figure 2. They observed a strong size
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effect in torsion whereby the shear flow strength of the thinnest wires was
about three times that of the thickest wires. No size effects were observed
in the tension tests which produce no strain gradients. For each wire of
radius a, a power law relation between torque Q and the associated twist
per unit length « of the wire:

% = k(xa)"’" (2.22)
a
gave a good fit to the experimental data. The strain-hardening index was
measured to be n = 5 independent of wire radius, and the constant of
proportionality kK was observed to increase with diminishing wire radius a.
Note that the non-dimensional group xa may be interpreted as the
magnitude of the shear strain at the surface of the wire, and the normal-
ized torque Q/a’ is a measure of the shear stress across the specimen in
some averaged sense. The observation that k£ depends on wire radius
implies that the constitutive law for the copper must contain a material
length scale. To see this, consider the counter argument. If the local shear
stress at any point in the wire were to depend only upon shear strain
independent of any material length quantity, then it is straightforward to
show by dimensional analysis that the curves of Q/a® versus ka must
superimpose. Clearly they don’t. Inclusion of strain gradients in the consti-
tutive law necessarily introduces a material length scale # which gives rise
to a dependence of k on a /7, and we proceed to investigate the quantita-
tive implications of doing so.

Fleck et al. (1994) matched the predictions of their couple stress version
of strain gradient theory (given by (2.2) and (2.21)) to the observed
~ torsional response of the copper wires by selecting a value for the length
scale /. equal to 3.7 um. The following questions now arise:

() Is the predicted torsional response for the more general strain
gradient theory given by (2.15) and (2.21) different from the special
case of couple stress theory?

(ii) Is the predicted response sensitive to the nature of the functional
form assumed for the overall strain measure & in terms of the strain
invariants £/}, nny > nene and nlan? As illustrated by
(2.3), the relation (2.15) gives only one particular choice of coupling
the strains and strain gradients.

In answer to the first question, it can be noted that the invariants

n{,(-,?n,f},? and n{},f)n;},f) vanish when evaluated using the torsional displace-

ment field. The remaining strain gradient invariant, 1;,-'](.,2()17{](-,2(), can be
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expressed in terms of x;; x;; as n[](,f)n,'](,f) = 3 X{,‘ X;;- Thus, the more general
theory involving three invariants of the strain gradient tensor is identically
equivalent to the couple stress version for this problem upon taking

=(1/V2Y;.
In order to address the second question, the overall strain measure & is
written in the more general form analogous to (2.3):

2 /2 2
2 ()Y
& = ( 3 81]8 ) (/ n:](k)n:j(k))

1/n

+ (@) + (LmSm)” (223)

where the range of the coupling coefficient u is from 1 to 2, in accord with
the rationale discussed earlier. The expression (2.23) for & is homoge-
neous and of degree one in the strain and strain gradient quantities, and
reduces to (2.15) upon taking u = 2.

The relation between the torque Q and the twist per unit length « of a
wire modelled by the deformation theory solid (2.21) with (2.23) is deduced
most simply by noting that the strain energy for a unit length of the bar is
given by

[ w(e)av = /KQ(K) dx (2.24)
Vv 0

Since Q is of degree 1/n in k, (2.24) may be rewritten as

j w(&)dV = - O« (2.25)
vV

Now, if (2.21) for w is expressed in terms of « using the relation between
the linear strain distribution across the wire and the twist and is then

substituted into the left-hand side of (2.25) and integrated, one finds (with
£=4cs)

1/n V4 (n+1)/n (n+1)/np '
L. 27720(;:7“) (;) [ ((ff/) + 1) dé¢ (2.26)
0

In the limit classical limit, /= 0, the torque Q, follows from (2.26) as

N

27 n ka \/"
(22)" am

Q=75 3nr1 >° V3 &,
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Integration of (2.26) can be done explicitly for u = 1 and u = 2, and the
non-dimensional ratio Q/Q, reflecting the torque elevation due to strain
gradient effects at the same « is found to be

Z% =1+ (32" - ;Z i i(»/? 2/a)(1 + V3 £/0)*" P
+ Zn':_ (/3 2/ " (2.08)
for u = 1 and
—53 =1+ B - Bop (229)
for p = 2.

The non-dimensional torque ratio is plotted as a function of Z/a in Fig-
ure 4, for w =1 and 2, and » = 3 and 5. For all cases shown there is a
significant enhancement in torque by a factor of 3 to 5 when Z/a is
increased from zero to unity. We further note that the elevation in torque

FiG. 4. Elevation in torsional strength due to strain gradients. The wire is of radius a and
the torque Q at a given twist is normalized by the torque Q, required to achieve the same
twist for a conventional solid.
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with increasing //a is greater for u = 1 than for u = 2, and is greater for
n = 3 than for n = 5.

At small values of //a, a greater size effect is shown for u = 1 than for
n = 2. This is made explicit by the asymptotic expressions for Q/Q, at
small //a. For p = 1, Q/Q, increases linearly with //a according to

[0) Gn+1)n+1)
Q, L+ n(2n + 1)
whereas for u = 2. Q/Q, increases quadratically with //a according to
[0) 3 Bn+1)
—_ =14 - —
Q 2
The measured torsional response shown in Figure 2(a) may be used to
deduce a value for the material length scale /. Follow the same procedure
as outlined by Fleck et al. (1994), we find that the magnitude of / is
somewhat sensitive to the value adopted for w. For the case u =2, /= 4
pm fits the data, while for u = 1, /= 2 um. The value pu = 2 will be used
in most of the examples in the sequel as this value allows for a more robust
numerical implementation of solution procedures in more complicated
problems than is the case when u = 1. Nevertheless, the option of using
(2.23) with a value such as u = 1 should not be foreclosed in constitutive
modelling in the future, as the linear combination of strains and strain
gradient terms may reproduce behavior better than the harmonic sum of
these terms. Gradient contributions become numerically larger at smaller
values of the gradient invariants relative to the strain invariants for the
linear combination than for the harmonic sum, and this difference may be
physically significant as suggested by (1.1). Indeed, the distinct differences
in the elevation of the torque between w = 1 and 2 in the range of small
Z/a which is evident in Figure 4 and in (2.30) and (2.31) may provide
an opportunity to establish the choice by direct comparison with
experimental data.

V3 4/a) + O(/?) (2.30)

(Z/a)* + 0(/?) (2.31)

2. The Grain Size Effect on Polycrystalline Yield Strength

Ashby (1970) has argued that the grain size dependence of flow strength
can be explained in terms of the anisotropy of slip from grain to grain.
Consider a pure polycrystalline metal under uniaxial tension. If each grain
were unconstrained to deform freely under the applied stress then any
chosen grain would deform to a different shape from that of its neighbors
due to the difference in its crystallographic orientation. To ensure compat-
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ibility of deformation from grain to grain, the strain state within each grain
is non-uniform, and geometrically necessary dislocations are generated
within each grain in order for them to fit together. The simplest physical
arguments reveal that the density p; of the geometrically necessary
dislocations scales with the average strain in each grain divided by the
grain size d. (Measurements of dislocation densities in deformed polycrys-
tals do seem to follow this law: the density increases linearly with tensile
strain, and, at a given strain, the density scales with the reciprocal of the
grain size. See for example Essmann et al., 1968; McLean, 1967). For small
grains the density p; will exceed that of the statistically stored dislocations
ps, and relation (1.1) suggests that the elevation in flow strength scales
with d~'/2. This is consistent with the observed Hall-Petch grain-size
relationship, whereby the elevation in yield strength due to grain-boundary
strengthening varies as d~'/2. We note in passing that Nix has shown that
the grain-size effect on strength is enhanced when the material exists in
the form of a thin layer on an elastic substrate (Nix, 1988).

A crystal plasticity version of the strain gradient theory is introduced in
Section V below and can be used to explore the grain size effect in
quantitative detail. Smyshlyaev and Fleck (1996) have used the linear limit
of this crystal theory to predict the effect of grain size d on the macro-
scopic shear modulus of incompressible face-centered cubic (fcc) polycrys-
tals. The linear result provides a useful qualitative guide to the effect of
grain-size strengthening of non-linear polycrystals. Also, the linear result is
the first step in the estimation of the grain-size effect for non-linear
polycrystals: in order to use the non-linear variational principle of Ponte
Castenada (1991, 1992) the effective properties of the linear solid are
required.

In the linear analysis of Smyshlyaev and Fleck (1996) the crystals are
oriented in a uniform manner, so that the macroscopic response of the
polycrystal is isotropic and can be described by a single shear modulus p*.
It is assumed that each fcc crystal contains 12 independent slip systems,
and that each slip system deforms in shear with an associated shear
modulus u. The strain energy density W for each slip system is expressed
in terms of both the elastic shear strain y and the spatial gradient of shear
strain Vy according to the assumed relation

1
W= 5#[72 +22|Vyl] (2.32)

where the material length scale / ensures dimensional consistency.
Hashin-Shtrikman bounds on the macroscopic shear modulus are shown in
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Figure 5 as a function of the grain size d. It is found that the macroscopic
stiffening varies approximately as d~'/2, in support of the Hall-Petch
relationship. However, the effect is not a strong one: as Z/d is increased
from zero to unity, the macroscopic shear modulus increases by about
10%. 1t is well known that a strong Hall-Petch effect is not observed in fcc
polycrystals due to the availability of a large number of slip systems for
each crystal. Further calculations are required to determine the predicted
grain-size effect for non-linear fcc polycrystals and for other
crystal structures. -

3. Strengthening of Metal Matrices by Rigid Particles

The macroscopic strength of particle-reinforced metal-matrix compos-
ites is found to depend upon particle diameter in addition to volume
fraction, for particle diameters in the range 0.1 um to 10 wm. For
example, Lloyd (1994) has tested a composite of silicon carbide particles in

0.54f

~ upper bound

0.52f

|
]

0.5 lower bound .

048

] 1 1 1 1 | 1
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FiG. 5. Hashin-Shtrikman upper and lower bounds on the macroscopic shear modulus u*
for an isotropic face-centered cubic polycrystal. Each grain of dimension d is assumed to
deform by slip on 12 independent slip systems. The slip response is taken as linear elastic with
a strain energy density function given by expression (2.32), involving the material length scale
/. Taken from Smyshlyaev and Fleck (1996).
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an aluminium-silicon matrix. He observed a 10% increase in the strength
when the particle diameter was reduced from 16 um to 7.5 um with the
particle volume fraction fixed at 15%. These particles are sufficiently large
that it is thought that plastic deformation is by the interaction of dense
clouds of dislocations with each particle rather than by individual disloca-
tion interactions. Nevertheless, conventional continuum plasticity (Bao et
al., 1991) predicts that the size of the particles (with the volume fraction
fixed) should have no effect on the composite yield strength. As in the
previous examples, this follows from the absence of a material-length scale
in the conventional theory using simple dimensional considerations. Steep
plastic gradients adjacent to each particle necessitate the existence of
geometrically necessary dislocations and associated local hardening, as
argued by Ashby (1970) and Brown and Stobbs (1976). These gradients
provide the rationale for turning to an approach based on strain gradient
plasticity when the particles are micron-sized or smaller.

Fleck and Hutchinson (1993) predicted a strong size effect for a dilute
volume fraction p of isotropically distributed rigid spherical particles of
radius a in a matrix of power law strain gradient solid characterized by
(2.2) and (2.1). In uniaxial tension, the average macroscopic stress o of the
composite is related to its average macroscopic strain £ by

n+1 g\
o= 20{1 + p( )fp}( ) (2.33)

n &9

where the factor p(n + 1)f,/n is the relative strengthening due to the
particles at a given strain z. Fleck and Hutchinson (1993) calculated the
factor f, for the CS solid in (2.20), and the results are repeated here in
Figure 6: f, is plotted as a function of #/a for selected values of n as solid
line curves. It is noted that f, increases dramatically with increasing //a.
The role played by the strain hardening index n on this factor is more
modest, with a small decrease in f, with increasing n.

Additional calculations have been carried out to investigate the role
played by stretch gradients acting in concert with rotation gradients on the
strengthening due to a dilute concentration of rigid particles. Eq. (2.33)
remains valid, and results for f, are included in Figure 6 as dashed line
curves for the SG solid in (2.20). The contribution of #n\’n$; to the
strain energy density w leads to enhanced strengthening at finite //a. For
example, at //a = 1 the full-strain gradient theory predicts 50% more
strengthening than that predicted for the couple-stress solid, for all values
of n considered.
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FiG. 6. The effect of particle radius a on the macroscopic strengthening f, of a strain
gradient deformation theory solid. Results are given for both the stretch—gradlent (SG) solid
and for the couple stress (CS) solid (taken from Fleck and Hutchinson, 1993). In all cases

n=2.

The influence of the parameter w in (2.23) on [, is displayed in Figure 7
for the two solids. Numerical difficulties in the solution process are
encountered for values of w close to 1, and thus the smaller value of u
used in Figure 7 is 1.25. The trend of the prediction for the smaller value
of u can be approximately reproduced using p = 2 if a large value of //a
is chosen. However, as was the case for wire torsion, one concludes that
the form of the interaction between strain hardening and strain gradient
hardening as reflected by the parameter u may be deserving of further
attention, particularly because of the differences in behavior at small
values of Z/a.

There is experimental and theoretical evidence to suggest that the size
of each phase in a two-phase alloy has an effect on the macroscopic
strength (Funkenbusch and Courtney, 1985; Funkenbusch et al., 1987;
Smyshlyaev and Fleck, 1994, 1995). Specifically, it is observed that the
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FiG. 7. The influence of the parameter u in (2.23) on fp» for particle strengthening, n = 3.

smaller the size of each phase, the greater is the strength. The two-phase
alloy bridges the two extremes of a metal matrix composite containing
rigid particles and a single-phase alloy. Since a size effect is noted at both
limits, it is not surprising that a size effect is also observed for the
two-phase alloy. '

4. Void Growth and Softening: The Role of Void Size

A common fracture mechanism of ductile metals is nucleation, growth,
and coalescence of voids. There exists a well-defined mechanics of void
growth based on conventional continuum plasticity theory (e.g., Rice and
Tracey, 1969; Gurson, 1977; Needleman et al., 1992; Tvergaard, 1990).
None of the widely used results from the literature on void growth involve
any dependence on void size, even though they are sometimes applied to
voids of micron or even sub-micron size. There is some indirect evidence
that voids in the micron to sub-micron size range are less susceptible to
growth at a given stress state than larger voids (private communication
from A. G. Evans, 1996), but a careful experimental examination of this
issue remains to be carried out. It is of interest to study theoretically the
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effect of void size upon void growth and the associated macroscopic
softening within the context of the present class of strain gradient theories.
We shall see that void growth strongly distinguishes between gradient
effects tied solely to rotation gradients versus those arising as well from
stretch gradients. Moreover, void growth phenomena may provide a robust
means for confronting strain gradient plasticity predictions with
experiment.

Consider the problem of an isolated spherical void of radius @ in an
infinite, incompressible power law matrix which has been addressed in
most prior work, but with a matrix characterized by w in (2.21) with the
effective strain (2.15). The solid is subjected to uniform remote axisymmet-
ric loading specified by o5; = S and o3 = 05, = T with S > T, as de-
picted in the insert in Figure 8(a). As in previous work, it is convenient to
employ the remote mean stress g’ = 15 + 2T and the remote deviatoric
stress o =S — T, and to introduce the non-dimensional measure of
stress triaxiality as X = o, /0 ”. The remote strain follows from o;; =
ow/de;; as

£33 = go(a'w/zo)n, e =€p = — %8?3 (2.34)
Calculations have been performed on the volume expansion increment V
of an isolated void of volume V' in the infinite matrix subjected to an
increment of axisymmetric loading specified by £3; . Calculations have been
performed for each of the two strain-gradient solids given by (2.20). The
problem for the CS solid, for which w depends solely on the rotation
gradients, was previously analyzed by Fleck and Hutchinson (1993). Re-
sults for the normalized dilation rate, V/£5,V, have the functional form

v

&RV

rd

It is through the dependence on //a that void size produces behavior
different from that for the conventional power law solid.

Representative results are given in Figure 8(a) for the normalized
dilation rate as a function of //a for the stress triaxiality in uniaxial
‘tension, X = 1/3, and the triaxiality representative of that directly ahead
of a mode I crack tip in plane strain, X = 2.5. This figure illustrates the
sharp differences in the void growth behavior implied by the two constitu-
tive models, CS and SG, which were alluded to above. The limit for
//a = (O is the result for the conventional solid. There is very little effect of
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FIG. 8. Growth rate of an isolated void under remote axisymmetric loading: axial stress S

and transverse stress 7. The stress triaxiality X is defined by X = (S + 27)/3(S — T).

a) Effect of void radius @ upon normalized void growth rate, for n = 3. b) Effect of stress
triaxiality X upon normalized void growth rate.
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void size upon the normalized dilation rate for the CS solid at both
triaxialities. This is readily understood when it is recognized that the
dominant deformation field in the vicinity of void producing its expansion
is the spherically symmetric radial displacement field. The radial displace-
ment field is irrotational inducing no rotation gradients and, therefore, no
strain gradient contribution to the strain energy density w for the CS solid.

By contrast, the spherically symmetric radial field does induce significant
gradients of stretch, leading to the exceptionally strong reduction of
growth rates for smaller voids in the SG solid relative to larger voids seen
in Figure 8(a). In effect, the expanding void is surrounded by a shell of
hardened material due to the presence of both strain and strain gradient
hardening. The authors are unaware of any existing experiments against
which to test these predictions. Typically, metals contain a distribution in
size of pre-existing void-nucleating defects such as soft inclusions and
particles with weak interfaces. When stretch gradients influence harden-
ing, strain gradient theory suggests that only voids larger than some cut-off
size will grow and coalesce; smaller voids should experience little growth.
Several other phenomena will be discussed later in this survey which
display a similarly strong selectivity to stretch gradients over rotation
gradients due to the character of their deformation fields. One is the
closely related phenomenon of cavitation instability, and another is the
indentation hardness test. It seems reasonable to hope that careful experi-
mental observations related to these phenomena, in conjunction with tests
where rotation gradients are dominant, should provide a means to identify
which of the competing constitutive models best reproduce small scale
behavior.

For completeness, void growth is plotted in Figure 8(b) as a function of
triaxiality ratio for three solids: the conventional solid (i.e., Z/a = 0), the
CS solid with //a = 1, and the SG solid with //a = 1. Results are
presented for both n = 3 and n = 5. It is clear from the figure that the
couple-stress solid displays almost the same rate of void growth as the
conventional solid at all stress triaxialities. In contrast, for all triaxilities,
the rate of void growth is reduced by about an order of magnitude for the
SG solid compared with the conventional solid.

There is a close connection between the reduction in void growth due to
strain gradient effects and the reduction in macroscopic softening due to
the presence of the voids, as the counterpart to particle strengthening. The
same power law metal matrix discussed above is considered which contains
an isotropically distributed dilute population of spherical voids of radius a.
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The porous solid is subject to the overall, or macroscopic, axisymmetric
stress state characterized by S and T with triaxiality X as defined above.
With @;; and %;; as the macroscopic stresses and strains and ®(g;;) as the
strain potential such that &;; = 9®/do;;, Fleck and Hutchinson (1993)
have shown that a dilute concentration p of voids alters ® to

[

b__c n+1 1 / .
<D—20é‘°0(2—0) {n+1 +pfv(X,Z,n)} (2.36)
The function f, can be computed from the solution for the isolated
spherical void in the infinite matrix (F in (2.35) is related to f, by
F = 0f,/dX). The larger is f,, the larger is the strain at a given stress, or,
equivalently, the greater is the softening at a given strain. Plots of f,
versus the triaxiality factor are given in Figure 9 for the same three solids
considered in the previous figure: the conventional solid (#/a = 0) and the
CS and SG solids, each with Z/a = 1. Again it is seen that there is little
difference between the softening predicted for the conventional solid and
the CS solid, with both predicting a large increase in softening as triaxiality
increases. When stretch gradients are assumed to contribute to
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FiG. 9. The effect of stress triaxiality X upon the macroscopic softening f, for an
isolated void.
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hardening, as in the case of the SG solid, softening is significantly
moderated, especially at large triaxiality.

In other work, Gologanu et al. (1995) have taken the first steps to
address a strain gradient theory for porous metals by generalizing the
Gurson (1977) model to include the effect of macroscopic strain gradients.
They do not address the issue of local strain gradients on the growth of the
voids, as done here. Instead, these authors retain the assumption that the
material surrounding the voids is a classical elastic-plastic solid. They
derive a modified yield function for applications where the gradient of
strains is such that the deformation scale begins to become comparable to
the void spacing. Their results are somewhat surprising in that the domi-
nant effect of the strain gradient is not influenced by the void volume
fraction or void spacing, and, moreover, the gradient effect persists as the
volume fraction approaches zero.

5. Cavitation Instabilities

A void in an elastic-plastic solid will grow unstably at sufficiently high
mean stresses in what is usually described as a cavitation instability
(Bishop et al., 1945). Strain gradients will delay cavitation to larger mean
stresses when the void size is comparable to /, assuming the solid
experiences hardening due to stretch gradients. In this section, results
from M. Begley (work in progress) will be presented for the effect of strain
gradients on the cavitation instability of a spherical void of initial radius a
in an infinite, incompressible solid subject to a spherically symmetric radial
loading at infinity. In the notation used above, the remote stress is
specified by S = T so that the remote mean stress is o, = S. An isotropic
solid containing a spherical void undergoes spherically symmetric deforma-
tions such that there are no rotations and, therefore, no rotation gradients.
Thus, of the two solids in (2.20), only the SG solid will produce a strain
gradient effect through its dependence on stretch gradients. The only
strain gradient term to survive in (2.19) is the term with coefficient /7, and
& reduces to

2 5 de,, \* 5 de, \*
&= —glel + =/? S| =g+ = (2.37)
or 2 or
where r denotes the radial coordinate and, as before, / =/, . Cavitation is
driven by the elastic energy stored in the remote field, and therefore it is
essential to include linear elastic strains in the constitutive model. To this
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end, the power law SG solid, (2.21) with (2.37), is coupled to an incom-
pressible linear elastic range according to

1
w = EEé;ﬂ2 for & < &,
s g n & (n+1)/n 1 1 5oz (2.38)
= — — 1|+ = >
N r1fle, 2[ 0

where E is Young’s modulus and the connection 3, = EZ, is required. In
uniaxial tension, this gives & = o/E for o < % and & = &(0/3,)" for
o > 3. Here, 3 is to be regarded as the initial tensile yield stress and &
as the associated tensile yield strain. The inclusion of a strain gradient
dependence in the linear elastic range through & is only for mathematical
convenience. It has essentially no influence on the cavitation stress since
the strain gradients in the elastic region are very small.

The cavitation analysis for the strain gradient solid parallels that given
for the conventional elastic-plastic solid given by Huang ef al. (1991). The
results presented below are obtained using an exact finite strain analysis in
which ¢, is the logarithmic strain and r is the radial coordinate in the
deformed state. However, Begley established that finite strain effects do
not have a major influence on the solution. The cavitation stress, g, is
the remote mean stress at which the void grows without bounds, i.e.,
dV/da,, — . It has the following dimensionless form

0,/ = F(N,3,/E, //a) (2.39)

where N = 1/n. Values of o,/3,, for the conventional solid (£/a — 0)
are presented by Huang et al. (1991); [o,],_,/3, lies between 4 and 8 for
values of N and 3,/E typical of metals. Here we display plots of the
normalized cavitation stress as the ratio a,/[0.],_,, thereby emphasizing
the effect of the strain gradients. The normalized cavitation stress is shown
as a function of //a for various N with &, = 0.003 in Figure 10(a), and
for various &, with N =0 in Figure 10(b). The effect is a strong one
according to the assumed material model. Voids with radii less than about
2/ will have a significantly enhanced resistance to cavitation relative to
larger voids. |

6. Indentation Hardness Testing

Size effects have been recognized in indentation hardness testing for
some time. Various factors can give rise to a hardness measurement which
depends on the size of the indentation, including surface effects and the
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- FiG. 10. a) The normalized cavitation stress o,/[0.],_, as a function of #/a. a) effect of
strain hardening exponent N, with &, = 0.003, b) effect of yield strain &, with N = 0.

absence of nearby dislocation sources for nano-scale indents. However, as
mentioned in the Introduction in connection with the hardness data in
Figure 1, there appears to be clear evidence of a strong indentation size
dependence in the range of micron to sub-micron indents which is due to
the increasing dominance of geometrically necessary dislocations as in-
dents become smaller (Poole et al., 1996; Stelmashenko et al., 1993; Ma



326 N. A. Fleck and J. W. Hutchinson

and Clarke, 1995; Nix, 1988). The scale is sufficiently large for very large
numbers of dislocations to be involved: consequently, this is another
example where a continuum plasticity approach would appear to be
required for quantitative analysis. The simplicity of the indentation test
and the availability of equipment for conducting micro-indentations sug-
gests that this test may be a good candidate for measuring the material
length scale, Z, in the strain-gradient constitutive model.

Work is underway to analyze the test for several indenter head shapes,
applied to both polycrystalline and single-crystal materials. At this writing,
the only results available are those by Shu and Fleck (1996) for axisymmet-
ric frictionless indenters applied to the CS material. Three head shapes
were considered: flat-ended, conical, and spherical and only a minor effect
of head shape was found for indentation of the non-linear solid. In
addition, results were obtained for a flat-ended circular punch with stick-
ing friction. Shu and Fleck (1996) obtained their indentation results by
the finite element method, with elements designed to capture the strain-
gradient dependence. The calculations have been performed without
accounting for finite strain effects, but earlier studies on indentation
of conventional elastic-plastic solids indicated that finite strain effects
should not alter the hardness predictions by more than a few percent
(Bower et al., 1993).

The results of Shu and Fleck (1996) are repeated here for the flat-headed
indenter of radius a. The indenter is pushed into a semi-infinite half-space
of the elastic-plastic CS material specified by (2.38) and (2.20). Two
conditions at the interface between the indenter and the half-space have
been considered: frictionless contact and fully sticking contact with no
sliding. The load P applied to the indenter approaches an asymptote P, .
as the indenter is forced down into the half-space. The hardness is defined
to be H = P, /(ma?). For the problem posed it has the form

H=3F(n,//a,&,) (2.40)

where the dimensionless function F depends on which of the two contact
conditions are operative. The dependence on the initial yield strain &, is
weak; the results presented in Figure 11 have been computed with &, =
0.01. The results in this figure bring out the role of strain gradients by
normalizing H at a given //a by the corresponding hardness prediction
for the conventional solid (with /= (). There is an appreciable depen-
dence on the assumed contact condition. The size dependence for the
frictionless indenter is rather small, while that for the indenter with no
sliding is somewhat more substantial. Indentation is not unlike void growth
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or cavitation in that the indenter forces a ‘radial’ outward expansion of the
material. The contribution to the deformation field from this outward
expansion produces relatively small rotations. Thus, as in the case of the
other two phenomena, indentation is not expected to give rise to a very
large strain gradient effect for the CS solid. The sticking indenter induces
more shearing and rotation than the frictionless indenter, and this is the
qualitative explanation for the difference between the two cases.

It would appear that the indentation hardness test is another instance
for which a hardness dependence on stretch gradients will greatly influ-
ence the predicted size effect. Work is currently underway to calculate
these effects for indenters, conical and flat-headed, forced into the
SG solid. The expectation is that the size effects for this solid will be
considerably larger than those evident in Figure 11.

7. The Stress Field in the Vicinity of a Sharp Crack Tip

Attempts to link macroscopic fracture behavior to atomistic fracture
processes in ductile metals are frustrated by the inability of conventional
plasticity theories to adequately model stress-strain behavior at the small
scales required in crack-tip models. This does not appear to be an issue for
metals whose fracture process is void growth and coalescence since the
process zone is usually measured in tens or even hundreds of microns. It is

2-2 T T T 1
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F1G. 11. The normalized indentation hardness H/[H],., for a flat-ended circular punch.
Results are presented for both the frictionless and sticking cases, for a range of values of
strain hardening exponent n.
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a major issue when the fracture process is atomic separation. Conventional
plasticity theory is unable to explain how stresses at a sharp crack tip can
reach levels necessary to bring about atomic decohesion at the tip of a
sharp crack where the relevant scale is far below the micron level. The
high-strain gradients invariably present near the crack tip in an elastic-
plastic solid suggest that there should be an annular zone surrounding the
tip within which geometrically necessary dislocations play a role in elevat-
ing the local hardening and, therefore, the stress levels near the tip. A
discussion of a number of the open issues surrounding the goal of bridging
- from the macroscopic level where loads are applied to the crack tip
where the fracture process occurs is given in the article by Bagchi and
Evans (1996).

Some progress has been made in applying strain-gradient plasticity
theory to the estimation of crack tip fields by Huang et al. (1995), Xia and
Hutchinson (1996), and Schiermeier and Hutchinson (1996). Thus far, only
the CS solid has been considered in these studies. We begin the discussion
in this section by first considering the more general elastic-plastic deforma-
tion theory SG solid depending on both rotation and stretch gradients,
such as the power-law solid in (2.21) where the generalized strain quantity
& is defined by (2.19).

For plane strain and mode III crack problems, a J-integral exists for this
material which equals the energy release rate of the crack when evaluated
on a contour circling the crack tip in the usual manner. Application of the
J-integral to the crack-tip problem implies that the energy density w must
have a r~' singularity, where r is the distance from the tip. This same
conclusion is reached for the conventional solid, leading directly to the
general form of the HRR crack tip fields for a power-law material. The
form of the singular fields is different for the general strain gradient solid.
For the general solid, the strain gradients n will dominate the strains € as
the crack tip is approached. Since & must have a r="/**D singularity for
w — r~1, it follows that m must also have a r~"/***V singularity. The
dominant quantities in the crack tip singularity field can be written in a
form analogous to that for the HRR fields for the conventional power-law
solid:

n/(n+1)
Mijk =/—1go(m) Mx(0, n),
7 1/(n+1)
Tijk =/20(§_g_c—;) :i.ijk(o’ n) (2.41)
02 0%~n
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where C, is a normalizing constant and (r, 6) are planar polar coordinates
centered at the tip. The @-variations, %, and 7;;, depend on the choice of
normalization and on which of the modes, I, II or III, pertains. They also
depend on the particular combination of the material length parameters,
/', invoked for the material model (e.g., as in (2.20)). In the general case,
the stress and strains are less singular than the quantities in (2.41). More
importantly, however, is the fact that the higher order stresses T, jk con-
tribute to the tractions in proportion to their gradient—see ahead to eq.
(3.8) in Section III. Thus, tractions t acting on material surfaces will be
strongly singular according to t — r~("*2/(*+D 1t follows that the trac-
tions near the tip of a sharp crack in the general strain gradient solid
will be significantly higher than the tractions near the crack tip in the
conventional solid.

The mode III crack The analytical features outlined above have been
detailed for the mode III crack (Schiermeier and Hutchinson, 1996). For
the antiplane shearing deformations of mode III no stretch gradients
occur. Thus, the general solid reduces to a solid which depends only on
rotation gradients in anti-plane shear, and, as a consequence, the problem
fits within the framework of couple stress theory. The mode III crack study
investigated the influence of the two rotation-gradient invariants in (2.19),
xij Xij and x;; xj;, with the finding that the x;; xj; invariant plays a sec-
ondary role. Thus, with little loss in generality, the mode III crack in the
general solid can be replaced by the problem for the crack in the CS solid,
similar to the exact reduction which applies for wire torsion. The full
details of the singular crack-tip fields in (2.41) have been worked out for
the mode III problem. Numerical results have been obtained using a finite
element scheme for the full field, merging the singular fields with the outer
HRR field whose amplitude is specified as J. (For the pure power material,
the HRR field is a solution to the field equations at large r.) The transition
from the outer HRR solution to the inner singular field (2.41) occurs
smoothly over the annular region centered at the tip roughly equal to
3/ <r < 5/. This transition is illustrated by the behavior of the shearing
displacement of one face of the crack relative to the other, 8, displayed in
Figure 12. The normalization of 8 on the ordinate is a consequence of the
choice r/# as the abscissa. The three curves shown are the HRR solution,
the asymptotic solution from the singular field (2.41), and the full finite-
element solution to the problem. The r-dependence of & associated with
(241) is & » r»*2/(+1 and it can be seen that the full numerical-
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F1G. 12. The shear displacement profile near the tip of a mode III crack in the CS-solid.

solution asymptotes to the near-tip solution. The full solution also
asymptotes to the HRR solution once r// exceeds about 5.

Mode I and II crack solutions Although no results have yet been obtained
for mode I or II cracks in the general strain gradient (SG) solid, it is
expected that many of the qualitative features of the solution described for
the mode III crack will apply to the plane strain-crack problems as well.
We note in passing that for the general case of plane-strain deformation,
such as the mode I or II crack-tip fields, the combined strain quantity, &,
and hence the strain density, w, can be written solely in terms of the
invariants &;;¢/;, n{},lc)n{},lc) and xj; x;; since the invariant x;; xj; vanishes
identically. Thus, the most general material in this class is represented by
(2.19) with only two length parameters, /, and a second parameter
proportional to (477 /3 + 8/7/5)"/2. Quite another result from that de-
scribed above has been obtained for plane-strain cracks in the CS solid,
whose strain-gradient contribution to hardening, one should recall, de-
pends only on the rotation gradients. Unexpectedly, it turns out that the
singular field for the plane-strain problems is irrotational (Huang et al.,
1991; Xia and Hutchinson, 1996). Consequently, rotation gradients vanish
in the dominant singular field, as does the invariant y; ; X;;- The argument
leading to (2.41) no longer applies for the plane-strain crack in the CS
solid, since the strain-gradient contribution to & does not dominate the
contribution from &, as r — 0. (This possibility is excluded in the mode III
problem because no irrotational singular field exists.) The outcome of the
full analysis of the plane-strain crack problems for the CS solid is that &,

is dominant in the singular field and the requirement that w — r~! leads
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to a singular field with € — r~/(**D and o — r~1/**1_This is the same
r-dependence for the stresses and strains in the HRR field. Nevertheless,
the two fields are not the same. The HRR field is not irrotational,
moreover, the gradients of 7 in the CS crack problem are of the same
order as o, and therefore make their presence felt in the singular field.
As in the case of the mode III problem, the plane-strain HRR solution
satisfies the field equations for the power law CS solid as r — «. Given the
observations above, the general form of the solution to the full problem
for a semi-infinite plane-strain crack in the CS solid with the HRR field
imposed as r — « can be written as follows (Xia and Hutchinson, 1996):

( J n/(n+1)-~ r ) r
[81']‘7 /Xij] =&, W _8;',‘(9,?,”),)(1','(9, ?,n)]
(2.42)
[ /_1 s 7 l/(n+1)-- (0 r ) ) (0 r )]
7y ¢ my) = 2, S &L r | T\ o ) i\ O o

Here, m is the couple stress tensor whose components represent a subset
of the components of 7 as specified in Section III. The quantities &;; and
a;; approach the corresponding HRR quantities as r// — « (if the nor-
malizing factor I, is the same as that for the HRR fields) and approach
those associated with the singular field as r// — 0. The quantities j;; and
m;; vanish for both r/# — 0 and o, but are non zero in the intermediate
region connecting the remote field to the crack-tip singular field. Plots of
o, and g, are given in Figure 13 for the mode I crack with n = 5. The
transition from the HRR solution to the dominate singularity again occurs
smoothly over the range from r//= 5 to about 1/5. Surprisingly, the
normal stress acting in the plane ahead of the crack tip, gy,(6 = 0) is
hardly affected by the strain gradient effects in the CS solid. It is antici-
pated that this is one aspect that will change for a solid whose hardening
depends on stretch gradients.

A better understanding of stress elevation required to produce decohe-
sion will require the investigation of the stress fields for the mode I crack
for materials whose hardening depends on both the stretch gradients and
rotation gradients. As discussed above, the nature of the crack-tip singular-
ity will change to the form given in (2.41) when stretch gradients are
included. It seems likely that the more general theory will result in a
significant elevation of tractions ahead of a sharp crack, but that remains
an open question.
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F1G. 13. Non-dimensional stress field around the tip of a mode I crack for the CS solid, at
selected values of radius r from the tip. The non-dimensional stresses are defined in (2.41).
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8. Implications for Further Development of the Theory

Among the examples discussed above are several for which stretch
gradients are absent, such as wire torsion and the Mode III crack, and
several for which rotation gradients are either absent or relatively unim-
portant, such as cavitation, void growth and, possibly, indentation. In the
other examples, both types of gradients are present and have the potential
for contributing to size effects due to strain gradient hardening. The two
sets of examples which are dominated by one type of gradient over the
other may provide the best means for the experimental determination of
the material-length parameters governing the two types of hardening in
the theory.

As has been emphasized in this survey, the objective for developing a
strain gradient theory of plasticity is the extension of continuum plasticity
to the micron and, possibly, sub-micron range for application to phenom-
ena involving large numbers of dislocations. There is ample evidence that
conventional plasticity theories fail to capture the strong size effects which
become important at these small scales. Plasticity effects are important in
many applications of thin films and multilayers. The thickness of films and
layers in some of the applications fall within the scale for which the
present theories are intended. Shear lag in thin metal films and layers at
edges and corners where they attach to substrates gives rise to significant
shear and rotation gradients. Recent experiments on thin film/substrate
systems which are cycled thermally to produce plastic deformation display
a large film-thickness dependence on yielding and continued plastic flow
(private communication from A. G. Evans, 1996). Such effects are well
known for very thin epitaxial films where dislocation nucleation is the
controlling factor. However, in these experiments the films are polycrys-
talline and contain large numbers of dislocations, making them candidates
for the present class of theories.

III. The Framework for Strain Gradient Theory
A. TOUPIN-MINDLIN THEORY

Toupin (1962) and Mindlin (1964, 1965) have developed a theory of
linear elasticity whereby the strain energy density w per unit volume

depends upon both the symmetric strain tensor &;; = 3(u; ; + u; ;) and
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the second gradient of displacement 7, ik = a,a U = Uy ;;, Where d; is the
forward gradient operator. Their theory furnishes stress quantities which
are work conjugate to the generalized strain variables € and v, and also
provides a principle of virtual work. The work increment per unit volume
of solid due to an arbitrary variation of displacement u is given by (2.4)
where the symmetric Cauchy stress o o;; is the work conjugate to the strain
variation de¢;; and the higher order stress measure ik (= 7;) is the work
conjugate to the strain gradient variation &m,; . For the special case of a
deformation theory solid we may write w = w(s; j» M)y giving oy
dw/de;; and 7, = dw/dny, .

Followmg the strategy of Toupin and Mindlin, the work increment for a
volume, V, written

[dw]ldV = lo;; 8¢;; + 7, & i1 dV (3.1)
fV fV J U jk OMijk
or, via the divergence theorem, as

f[O' 68 + Tl]k 67),Jk]dV= —fo:gi(a.ik - 5]'Tijk)] 5uk dV

+_/‘;Tn.i(a'ik i Tijk ] du, ds

+f (3 Suy ]dS (3.2)

where n; is the unit normal to the surface S of the body. The term 0 ou,
appears in the last integral on the right-hand side of (3.2). We note that
a du, is not independent of Su, on the surface S because, if du, is
known on §, so is the surface-gradient of Su,. In order to correctly
identify the independent-boundary conditions in a variational principle we
resolve the gradient ; du, into a surface-gradient, D, éu,, and a normal
gradient, n;D du,,

d; duy = D, du, + n;D 8u, (3.3)
where the surface-gradient operator D; is

D.

]

(84 — n;n,)o, (3.4)
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and the normal gradient operator D‘is
D =n,d, (3.5)

To proceed, we substitute (3.3-3.5) into (3.2) and make use of Stokes’s
surface divergence theory (see for example, Mindlin, 1965) to get the final
form for the principle of virtual work

fV[O'ij 8e;; + Ty Oyl dV

= [[fi dwlav + [l du,lds + JIr(Dsu,)1dS (3.6)
14 S S
where the body force per unit volume is f, . The equilibrium relation in V is
fe + 5;'(‘71‘/: - (Ej'rijk)) =0 3.7
The surface traction t, on the surface S of the body is
tk = ni(o-ik - (%Tl]k)) + nianijk(Dpnp) - Dj(niTijk) (3.8)
and the double-stress traction r;, on S is

r, = n;n.T (3.9

i"vjlijk

We conclude from (3.6) that the displacement field u must satisfy three
equilibrium equations given by relation (3.7) and six boundary conditions
given by (3.8) and (3.9).

For the special case where the surface S has edges, an additional term
must be added to the right-hand side of (3.6). Suppose S has an edge C,
formed by the intersection of two smooth surface segments S and §® of
S. The unit normal to segment S® is designated n® and the unit normal
to the segment S® is designated n®. The unit tangent ¢ along the edge
C is defined with segment SV to the left, and the unit tangent ¢@ is
defined with segment S® to the left. We define the unit outward normal
to C and lying within the surface S by k¥ = ¢® x n®; similarly, the
unit outward normal to C and lying within $® is written as k®@ = ¢@® x
n®. Then, the additional term to be added to the right-hand side of (3.6)
upon application of the surface divergence theorem to (3.4) is

[ Lpi su1ds® (3.10)
C
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where s is the arc length along the edge C in the direction ¢. The line
load p, is given by

— (O 212
P = 1§ )kz(' )Tijk — nf )k} )Tiik G.11)

In the more general case, the piece-wise smooth surface S can be divided
into a finite number of smooth parts, S,, each bounded by an edge, C,.
The line-integral contribution (3.10) becomes

Y ¢ [ p, Su,lds (3.12)
n Cn
and the line load p, along any sharp edges C, is given by the jump in
value A of (n;k;7;;) on each side of C,;:
P = Alnik;7,5) (3.13)

The complete virtual work expression becomes
[o;; 6¢;; + 7, O 1AV = [ [f, Su, 1dV + [[¢, 6u,1dS
fV i 9€ij T Tijie OTijk /V fi duy j:q k OUy

+f[rk(D su)lds + ¥ 56 [P, Su,lds
S = ’C,

(3.149)

Global equilibrium of forces dictates that the net force on the surface of
the body vanishes. In order to obtain an explicit expression for the net
force on the body we impose a uniform virtual displacement &u$. The
associated internal work in (3.2) vanishes and the external work is given by

SWEXT = §y°. f[n (e—-9-7)]dS=0 (3.15)
S

Since this expression vanishes for-all du; we conclude that the net force
on the body, given by [s[n,(o;, — 7, ;)1dS, vanishes. A similar argument
is used to obtain an expression for the net moment on the body. For a
body in equilibrium, the net moment on it vanishes, implying that the work
done through an incremental displacement field du = 80° X x vanishes
for an arbitrary uniform rotation 8§0°. The internal virtual work vanishes
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since a uniform rotation induces vanishing strains and vanishing strain
gradient. The external work follows from (3.2) as

_ 4
SWEXT=80°-f[xXn-(0'-0-1')+ gn-'r:e dS =0 (3.16)
S

where e is the alternating tensor. Thus, the vanishing net moment on the
body is the vector quantity working through §0° in the equation above.

B. CONNECTION WITH COUPLE STRESS THEORY

It is instructive to rearrange the principle of virtual work into a form
which separates out the work terms associated with couple stresses and
those associated with double forces per unit area. This decomposition
leads to a transparent reduction of the general framework to couple stress
theory when the constitutive behavior depends only on the rotation gradi-
ents. We shall consider first the general case of a compressive solid, and
then specialize the results later for the incompressible limit.

Following the development of Smyshlyaev and Fleck (1996) the strain
gradient tensor m is partitioned into a symmetric tensor m°® representing
stretch gradients, and a curvature measure m“:

n=mn5+" (3.17)

In parallel with the definitions (2.10) and (2.11) for the deviatoric tensor
n', we adopt the definitions

1
ik = g(’?ijk + My T Mhij) (3.18)
and
A s 2 2
Nijk = Mijk — Mijk = geikp Xpj + -3—ejkp Xpi (319)

and note that % and n“ are orthogonal to one another. The n* — x
relation may be inverted to give

1

Xij = -z_eiqrnj/qir (3.20)

and so n” is a useful third-order tensorial representation of the second-
order curvature tensor. Each has eight independent components, since

Xii = 0.
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A similar decomposition applies to the higher-order stress 7. We can split
7 into a symmetric tensor 75 defined by

1

Tiik = _3—(Tijk + Tiki + Tkij) (3.21)

and a remainder 75 such that

— .S A
Tijk = Tijk T Tijk (3.22)

On noting that 75 is orthogonal to an arbitrary n“ and that T i
orthogonal to an arbitrary 15 the work increment 8w can be written
simply as

Ow = 0y; 8g;; + T, Oy = 0y Be;; + 'rgk 8115,( + Ti‘fk 811,-‘]‘-‘,c (3.23)

The work term 7,7, 87, represents the work done by the couple stresses
m acting through the curvature increment 8y,

Tifk 677:;'11: =mj; bx;; (3.24)

On substituting (3.19) into (3.24) we obtain an explicit expression for m in
terms of 74:
4 4

Mmjp = geikpﬁﬁc = geikajik (3.25)

and similarly, substitution of (3.20) into (3.24) gives the inversion formula

1 1

jqr 4 iqr 4 r

The higher-order stress terms T appearing in the reduced form of the
principle of virtual work (3.14) can now be re-expressed in terms of couple
stresses m and the symmetric tensor 75. The derivation is by successive
application of Stoke’s surface divergence theorem and follows that laid
down by Toupin (1962) and Mindlin (1964). Here, we quote only the result:

mg; (3.26)

fV[a',-j 85, + mj; 8x,; + 75, onS ] AV = [V[fk Su,ldv + js[ik du,1ds

+[[c7k 80,1dS + f[fagN]ds+ y qj [ 5, Su,lds (3.27)
S S n ’C,

where the body forces f, are in equilibrium with stresses within the
volume V according to the relation (3.7), which may be rephrased as
1

Tik,i = 5 CjucMMij, it — Tkij T fi =0 (3.28)
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The reduced surface traction #, has three independent components which
satisfy

1
. _ _.s | _ s1_ s
e = nl(o'zk o M, i€tk — Tilk, i Dk[inpkl] Dk["p”s”ITpks]

+ nyn, 1 (Din) + nn,nonrs (Din)) (3.29)

while the two reduced torque tractions g, are tangential to the surface of
the body and are given by

= _ s _ s
gr = nimy + 2n;nn e, T, nknp(n,.mip + 2ninjnqepq,7',-j,) (3.30)

The single double force 7 is the work conjugate to the normal strain
increment dey = n;n; 8¢;; and is related to 7° via

r= n.n.nkq'gk (331)

The line force p, along the edges C, of the piece-wise smooth surfaces S,
satisfies

1
Pe = Alnkirly + ninnyk 75, + —ninyn ke, ,.m, (3.32)

i qTijg T 5

The version (3.27—(3.32) of the principle of virtual work makes explicit
the contribution to internal and external work from an increment in strain,
an increment in rotation gradient (curvature) and an increment in stretch
gradient. Following the argument of Koiter (1964), the spherical part of
the couple stress tensor m enters neither the virtual work expression for
the body nor the constitutive law (since x is a deviatoric tensor), and
-without loss of generality we may take m; = 0.

Now consider the limit when the strain energy density w depends only
on strain and rotation gradients and has no dependence on m°. The
double forces per unit area 75 vanish, the term [([7 8¢y ]1dS in relation
(3.27) disappears and the virtual-work expression reduces to that of cou-
ple-stress theory as given by (B15-B18) in Fleck et al. (1994)

C. THE INCOMPRESSIBLE LIMIT

In the incompressible limit, the mean stress o; and the mean higher-
order stress tensor 7¥ do not appear in the constitutive law. We shall
show that a consequence of the kinematic constraint imposed by incom-
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pressibility is that the number of independent boundary conditions is
reduced by one. Further, we may take 7¥ to vanish identically without
affecting any of the terms in the virtual work principle or constitutive law.
The arguments are as follows.

Consider again the reduced form of the principle of virtual work for the
compressible solid, as given by relation (3.13). Incompressibility places a
kinematic restriction on the normal component of D §u; at the surface S
of the body:

since

In other words, given a distribution of displacement increment du ; on the
surface of the body, the normal components D 8u; are constrained by
(3.33), and only the two tangential components of D du ; remain arbitrary.
Consequently, only the two tangential components of the double-stress
traction r, can be specified as independent external tractions on the body.
Somewhat lengthy manipulation of (3.14) and making use of (3.34) gives

[ Loy 8e; + 7y Smip ) dv = [1f, 6w Jav + G, + Hn,) 6u,]dS
| 4 | 4 S

+f[?k(D du,)lds + Y 56 [p, du,ldS
S n Cn
(3.35)

where H is a combined measure of the hydrostatic stress according to

1 1
H= .go-kk — -2—1'jkk,j (3.36)
The body force f, is in equilibrium with the deviatoric stresses (o', 7")

and the distribution of H according to
feton, — T+ H, =0 (3.37)

The three independent surface tractions #, on the surface S of the
incompressible body are

i = n(oy — Ty ;) + Dilmgnyn, ;) — Di(ngyy)

+[ninjri — n(nnin,7,,)|(D,n,) (3.38)
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and the two independent double-stress tractions 7, tangential to S are

We emphasize that the constraint of material incompressibility has re-
duced the number of independent boundary conditions associated with the
displacement gradient from three to two. The line load p, in (3.35) is
given by

by = Akl — kyninn 7] (3.40)

i"ji%plijp

Note that the hydrostatic stress 303, and the hydrostatic higher stress
v# enters the virtual work statement (3.35) only via the term in H
appearing in the surface traction term of (3.35) and in the equilibrium
statement (3.37). The relative magnitude of 30;, and ¥ is arbitrary: only
the combination H as defined in (3.36) is known. Therefore, we may
simplify the virtual work statement by taking 7 to vanish identically and
put T =7,

The number of independent boundary conditions in the alternative
statement of virtual work (3.27) may similarly be reduced by one upon
enforcing incompressibility. The incompressibility condition (3.33) implies
that normal strain increment &g, is not an independent kinematic quan-
tity: it can be re-expressed in terms of direct strains tangential to the
surface S. Thus, the term involving &, can be eliminated from (3.27) by
making use of the identity

fS[Fb‘aN]dS = [Y[Dp(n,-njnkf,-‘fk) — ninjnknpfifk(Dsns)] du, dS

— Z % [A(n,-njnkkpq-gk) Bup] ds (3.41)
n n

IV. Flow Theory

A flow theory version of strain gradient plasticity is now outlined, based
on the physical argument that the current strength of the solid is depen- |
dent upon the accumulated strain and strain gradient. The resulting
formulation results in a higher-order set of differential equations than
conventional plasticity theory, with an associated increase in the number
of boundary conditions. Consequently, the theory predicts the existence of
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boundary layers of deformation near to stiff interfaces. An alternative
strategy adopted by Bassani and co-workers (Acharya and Bassani, 1995) is
to assume that the current tangent-hardening modulus is increased by the
presence of accumulated strain gradients. The resulting formulation in
rate form is then only a slight modification of conventional theory, with no
additional boundary conditions, and no boundary layers near to interfaces.
Additional experiments are required in order to determine which strategy
is the more accurate. We believe the flow theory outlined below has a firm
physical basis, and is consistent with the observed physical phenomena
described in Section II.

In this section we first review conventional J, flow theory for an
elastic-plastic solid. A strain gradient version of J, flow theory is then
proposed, which is the complement to the deformation theory defined
above. Stability and minimum principles follows in a straightforward fash-
ion. Briefly, the strain gradient version of J, flow theory is generated by
the following prescription. In the absence of higher-order stresses T, the
deviatoric, symmetric Cauchy stress ¢’ may be represented by a five-
dimensional vector. When higher-order stresses are present the role of o’
is replaced by that of the 23-dimensional vector 3 = (o', 7'); 3 is made
up of the five symmetric components of o', the eight independent compo-
nents of couple stress 7’4 and the ten independent components of double
force per unit area 7'5. In like manner, the deviatoric strain tensor €’ is
replaced by the 23-dimensional vector £ = (&', q’).

Review of conventional J, flow theory In conventional J, flow theory,
higher-order stresses are absent and the strain tensor € is decomposed
additively into an elastic part € and a plastic part £P.. The elastic strain is
related to the Cauchy stress o via the linear relation

Eij'l =‘/¢'jklo-k1 (4.1a)

]

where

a+v) v
Mijk1 = T(Sikajl + 80;) — £ 8; 0y (4.1b)

Here, E is Young’s modulus and v is Poisson’s ratio.

The plasticity relations of conventional J, flow theory provide a connec-
tion between the plastic strain rate ¢P' and the stress rate ¢: the plastic
strain &P is determined by integration of &¢” with respect to time. In
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J, theory, €P is taken to be incompressible and the yield surface @ is
written as

®(o,Y)=0,-Y=0 (4.2)

where o, is the von Mises effective stress, o, = ‘/%si ;8 » and Y is the
current flow stress. For a hardening solid, the material response is plastic
when ® = 0 and g, > 0; and the response is elastic when ® < 0, 0or ® = 0
and o, < 0. The plastic strain rate £ is assumed to be linear in the stress

rate ¢, and to lie normal to the current yield surface, giving
1 0P

¢l = — 0,
h(o,)) oo ¢

(4.3

where the hardening rate A is chosen such that the uniaxial tensile
response is reproduced. This dictates that 4 equals the tangent modulus of
the stress versus plastic strain curve in simple tension. The work rate U per
unit volume of the elastic-plastic body is

T s - el = pl

U= 0‘,-6‘” = a'”ef’ + S,-jé‘if; (4.4)
and so U may be partitioned into an elastic part U® = ;¢ and a plastic
part UP = s;;P'. Substitution of (4.3) into UP' = s;;&F! gives U? = g,5,/h
which may be re-written as UP' = o, £P' where the effective plastic strain
rate £P' = g,/h. Observe that &F' = ,/%£P'sP' by direct evaluation,

making use of (4.3).

Flow theory for strain gradient solid Now assume the existence of higher
order stresses in the elastic-plastic body. We define the elastic strain
energy density w® for a purely elastic response of the isotropic, com-
pressible solid by

W =E

( el )2 1 el el
gx) t+ m £ &

v
(2(1 + v)(1 - 2v)
(1) (1 1(2) 12 13 3
+E (L%"li,('k)"h,('k) + L3 ni]('k)ni}k) + L%"li,('k)"?i'}k)
(3
+Li"7iﬁ"75< + L%niﬁnk(ji)) (4.5)

where the five elastic length scales L, have no physical significance but are
introduced in order to partition the strain gradient tensor m into an elastic
part and a plastic part

n=n%+ n°. 4.6)
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It should be noted that the elastic part of the strain gradients cannot be
expressed as gradients of the elastic strains alone when plastic strains
occur. A sensible strategy is to take L, </, so that the dominant size
effect is associated with plastic rather than elastic strain gradients. The
elastic strain state (e°,n°') is assumed to be related to the stress state
(o, 7) via the elastic strain energy density w®, giving

el

ow
o=%:¢= 7od 4.7)
and
| awel
g = 2 +8)

The elastic modulus # is the inverse of .# defined in relation (4.1) above,
and is given by

E 2v
( 0,6 + O O + 810k (4.9

“in = 20T\ T= 2
An explicit expression for the elastic modulus _# may be obtained by
straightforward differentiation of (4.5) with respect to m°, respectively.
However, the expression is lengthy and it is omitted here in the interests
of brevity.

A prescription is now given for the dependence of the plastic-strain rate
upon the stress rate in the presence of higher-order stresses. In the
presence of higher-order stresses, the deviatoric, symmetric Cauchy stress
o’ is replaced by the 23-dimensional vector 3 = (o', ') comprising the
five components of o’ and the 18 components of 7'. Similarly, the plastic
strain rate &P is replaced by the 23-dimensional vector &P = (&P! #P!).
The yield surface (4.2) generalizes to

®(2,Y)=2-Y=0 (4.10)

where the overall effective stress 3, is defined by

3

7 2
32 = _2_0_”0,” + Z [/ r(I) r(I)] = 0. Z ( ) (4.11)
I=1
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Here, o, is the usual von Mises effective stress,

3
g, = ——0’.’.0". (4.12)

e 2 ijYij
and the higher-order effective stresses 7" are defined by

7D = ‘/ Tor s (no sum on I) (4.13)

In a similar fashion, we introduce the effective plastic strain gradient rates
AP
Me y

. 1 . 1. ]

OF = 7 2’ (no sum on I) (4.14)

‘and an overall effective plastic strain rate &P by

. 2 3
g \/ Zapsp+ ¥ [eangra] (4.15)
I=1

When the solid is subjected to a uniaxial tensile stress o, 3 = o and yield
occurs when o =Y by (4.10); we interpret Y as the uniaxial flow stress.
Equation (4.10) is a natural generalization of (4.2) once it is assumed that
o' is replaced by 3 = (¢’,7’) and g, by 3 in the higher-order version of
the theory.

Plastic straining is assumed to be normal to the yield surface and the
plastic-strain rate is taken to be linear in the stress rate: (4.3) then
generalizes to

1 99 .

= _h(E) E (4.16)

gr!
where &P = (&P, ') has already been defined. In the case of uniaxial
tension, where the axial stress is o and the plastic strain is &P, we find
3, = o and (4.16) reduces to
Pl id 4.17)
ET = h (0) .

Thus, the interpretation of # remains the same as for conventional 7, flow
theory.
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The plastic work rate UP' is, via (2.4),

: 2

On substitution of the expression (4.16) for &* into (4.18) we get UP =
33, /h which may be rewritten as UP' = 3&P?' where the overall effective
plastic strain rate £P' = 3, /h.

A. SUMMARY OF ELASTIC-PLASTIC CONSTITUTIVE RELATIONS

The main constitutive relations in the strain gradient formulation are
now summarized in index notation. Plastic flow is normal to the yield
surface such that

EPl = — i 3 (4.192)
4 2h 3 )
and 4
3 9 3
e = 5 = Z [ 2770 (4.19b)
o, z]k

by (4.11) and (4.16). The rate of overall effective stress 3, is given by the
rate form of (4.11),

3 1
S=oseieit s [/2 /DD (4.19)

The elastic strain rates follow from (4.1) and (4.8) as

ij I
and
Mk =FijktmnTimn (4.21)

where K =_#"'. Note that the current formulation predicts that higher-
order stresses remain present in the case of a purely elastic response with
vanishing plastic strains. This is for purely mathematical convenience, and
is given no physical significance. Indeed, the magnitude of the elastic
higher-order stresses may be made arbitrarily small by choosing the ratio
Ly/7\ to be sufficiently small. In some cases it may even be convenient to
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take L;//, to be on the order of unity (e.g. the cavitation problem in
Section II.C.5). If the strain gradients are small in the elastic range, the
choice of the L, will hardly matter.

In the strain gradient versions above of J, deformation theory and J,
flow theory, proportional loading occurs at a material point when all stress
components of (o, ) increase in fixed proportion. That is, with (o, 7°)
fixed and A as a monotonically increasing scalar quantity, the components
(,7) = Mo +°) increase proportionally. When proportional loading is
experienced at a material point, it is readily shown that the predictions of
the strain gradient versions above of J, deformation theory and J, flow
theory coincide.

B. MINIMUM PRINCIPLES

The yield surface (4.10) is convex in the stress space (o, ) and the
plastic strain rate is normal to the yield surface. Hence the strain gradient
version of J, flow theory (with 4 > 0) satisfies the generalized Drucker’s
stability postulates (Drucker, 1951)

d-ij‘éil}l + ’i'ijk';hl}}c 20 (4.22a)

for a stress rate (&, T) corresponding to a plastic strain rate (¢?, w?'), and
(o;; — Ui?)éi;}l + (1 — Ti,;k)i’ir]"}c >0 (4.22b)

for a stress state (o, 7) associated with a plastic strain rate (¢?, 4?'), and
any other stress state (o*, v*) on or within the yield surface.

Minimum principles are now given for the displacement rate and for the
stress rate, for the strain gradient version of J, flow theory. These
minimum principles follow directly from those outlined by Koiter (1960)
for phenomenological plasticity theories with multiple yield functions, and
from the minimum principles given in more general form by Hill (1966) for
a metal crystal deforming in multislip. The presence of higher-order
stresses can be included simply by replacing o’ by = and &P by &P, as
outlined above. |

Consider a body of volume V' and smooth surface S comprised of an
elastic-plastic solid which obeys the strain gradient version of J, flow
theory (4.19-4.21). The body is loaded by the instantaneous stress traction
rate i and double stress traction rate 7? on a portion S, of the surface
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(see relations (3.6-3.9) for the definition of stress tractions and double
stress tractions). The velocity is prescribed as #? and the normal velocity
gradient is prescribed as Du on the remaining portion S, of the surface.
Then the following minimum principles may be stated.

1.  Minimum Principle for the Displacement Rate

Consider all admissible velocity fields u; which satisfy u; = 4! and
Du; = Dup on S, . Let &; = 3(&; ; +u; ;) and %, = i, ;; be the state of
strain rate derived from u, , and deﬁne (o, 7) to be the stress rate field
associated with (€,%) via the constitutive law for the strain-gradient
version of J, flow theory (4.19-4.21) with a hardening modulus 4 > 0.
Then, the functional F(a), defined by

F@a) = = [ [6:8 + Fujei] AV - fs lica, + #oDa,| ds (4.23)
T

is minimized by the exact solution (u, €,W,0,7). The exact solution is
unique since the minimum is absolute.

2. Minimum Principle for the Stress Rate

Consider instead all admissible equilibrium stress rate fields (o, %)
which satisfy the traction boundary conditions 7, = 2 and #, = 7’ on S;.
Let 4} and Du; be prescribed on the remaining portion S,, and define
(€,M) to be the state of strain rate associated with the stress rate (&, 1) via
the constitutive law (4.19-4.21) with A > 0. Then, the functional H(g, %),
defined by,

H(é,%) = —f[a &+ Ty ] AV f |iag + #.Dag| ds 429

is minimized by the exact solution (@, €,%,d,7). Uniqueness follows
directly from the statement that the minimum is absolute.

The proofs of the minimum principles for the displacement rate and
stress rate require three fundamental inequalities, which are the direct
extensions of those given by Koiter (1960) and Hill (1966), and are stated
here without proof. Assume that at each material point a stress state
(o, 7) is known; the material may, or may not, be at yield. Let (&, W) be
associated with any assumed (o, ) via the constitutive law (4.19-4.21).
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Similarly, let (¢*, 7*) be associated with an alternative stress rate field
(d*,7*). Then, the three inequalities are

(éif - ',-"]‘-)(a - 01) (nuk ﬁ;k)('}ijk - ".—i’;k) >0 (4.25a)

(a o, + €07 — 26‘,]0'”) (17”,( Tk M) Zﬁ,?;fki'ijk) >0 (4.25b)
and
(8110’17 + 81]0'11 28110'11) (nljk jk + nl]k 2ﬁijk'i.iq;'k) = 0 (425C)

The equality sign holds in the three expressions above if and only if
o* =¢ and 7* = 7.

V. Single-Crystal Plasticity Theory

We shall use the notions of statistically stored dislocations and geomet-
rically necessary dislocations to provide the physical basis for continuum
theory of single-crystal plasticity. Slip is assumed to occur on specific slip
systems in a continuous manner. The increment in flow strength of any
given slip system depends upon the rates of both the strain and the first
spatial gradient of strain. The crystal theory fits within the framework of
Toupin-Mindlin strain gradient theory described in Sections 3 and 4. It will
be seen that the theory leads quite naturally to a dependence on gradients
of rotation and stretch. Attention is restricted to the class of theories
usually referred to as small strain theory for which it is tacitly assumed
that stresses are small compared to the incremental moduli as well as
small strains.

A. KINEMATICS

The relationship between plastic strain gradient and dislocation density
in single crystals has been explored by Nye (1953) and Kroner (1958, 1961,
1962). We summarize the theory for the case of small deformations. In
order to calculate the density of geometrically necessary dislocations, a
crystal lattice is embedded within the solid. We assume that the material
shears through the crystal lattice by dislocation motion, and that the lattice
(and attached material) undergoes rotation and elastic stretching as shown
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B s

du? / / E, duR
i l I du; + dul
\ ) L
lattice }/ plastic elastic stretching
planes slip and rotation of

lattice

FIG. 14. The elastic-plastic deformation of a single crystal. Here, du? is illustrated for
single slip which in the text du; is defined for the general case of multi-slip.

in Figure 14. Consider the relative displacement du; of two material points
separated by dx;, in a Cartesian reference frame. The relative displace-
ment du; is decomposed into a displacement du? due to slip, a displace-
ment dul due to rotation, and a displacement du’ due to elastic
stretching,

du; = duj + duR + duf (5.1a)
where
duj = vy, dx; (5.1b)
duf = ¢,; dx; (5.10)
and
duf = £l dx, (5.1d)

Here, du; is linearly related to dx; via the slip tensor v, j» du® is related to
dx; via the lattice rotation tensor ¢;;, and duf is related to dx; via the
elastic strain tensor . |

A particular slip system, a, is specified by the vectors (s‘*), m(®)) where
s(*) is the slip direction and m® is the slip plane normal. The slip tensor
¥;; s associated with an amount of slip y(®) on each of the slip systems,
hence

Vi = 2 v Os{Om® (5.2)

a

where the summation is taken over all slip systems. The total strain

&;j = %(u,-, j + u; ;) at a material point equals the sum of the elastic strain
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e and the plastic strain &f'

’ P, where &f is the symmetric part of y,; such

that
pl 1 (a),,(a)
& = "2‘(')’ij + ) = 2y i (5.3a)
where
1
i = < (s(Omf® + sjomi) (5.3b)

The density of geometrically necessary dislocations is related to the net
Burger’s vector B; associated with crystallographic slip. Make an imaginary
cut in the crystal in order to produce a surface § of outward normal n.
Define B; as the resulting displacement discontinuity due to slip on
completion of a Burger’s circuit around the periphery I' of the surface S.
In other words, B; completes the circuit when I' is traversed in the sense
of a right-handed screw motion along n. Thus, B, is

e

¢ dui = @ v, &,
which may be rewritten using Stokes’s theorem as

B. = f a.n. ds (5.5)
1 A s mn n

where

Qi = €ukiVij, k (5.6)

In (5.6) e, ; denotes the alternative tensor. The tensor a is Nye’s disloca-
tion density tensor or torsion-flexure tensor. It gives a direct measure of the
number of geometrically necessary dislocations. Kroner’s a tensor, here
labelled ay, is related to Nye’s tensor @ by ax = —a’, where the
superscript T denotes the transpose. Nye (1953) has related a to the
distribution of individual dislocations within a crystal as follows. Suppose
there exist dislocations parallel to the unit vector r with Burger’s vector b.
Let there be N of these dislocations crossing unit area normal to r. The
number crossing a unit area normal to the unit vector n is Nn - r, and the
associated Burger’s vector is N(n - r)b. Hence in suffix notation B; =

Nn;r;b; and from (5.5), |
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If there are other sets of dislocations present with different values of N, b,
and r, then the total q;; is obtained by summing the values of 'Nb;r; from
each set.

It must be emphasized that, if the distribution of dislocations is
continuous, the net displacement discontinuity,

¢du,~‘ ,

vanishes along any closed path within the material, because the incom-
patibility in displacement

B; = ¢duf

due to slip is exactly matched by an equal and opposite displacement
mismatch

¢(du,-R + duf),

as demanded by (5.1a). It is clear from (5.1a) and (5.5-5.7) that the density
of geometrically necessary dislocations is defined unambiguously only
when a crystal structure is embedded in the material. We treat a; ; as the
fundamental measure of the total density of geometrically necessary
dislocations.

An alternative version of the expression (5.6) for «;; may be derived
through introduction of the unit vector t = s X m. Note that (s, m, t) forms
a right-handed triad with t in the slip plane and orthogonal to s. Substltu-
tion of the relation m = t X s into (5.2) gives via (5.6)

= T sy - ) 538)

[+4

The dependence of e upon the slip gradient in the slip direction s, and in
the transverse direction t is made explicit by (5.8). (A slip gradient in the
slip direction s is associated with edge dislocations lying along the t
direction with Burger’s vector parallel to the s direction. Similarly, a slip
gradient in the ¢ direction is associated with screw dislocations lying along
the s direction and Burger’s vector parallel to the s direction.) Note that a
slip gradient in the m direction does not contribute to «, as shown
explicitly by relation (5.8).
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The strain gradient n;,; = u; ; is related to the slip tensor v;;, lattice
rotation tensor ¢;; and elastic strain tensor s,-‘j.‘ by differentiating (5.1) with
respect to x, to give

— _ 1
Miki = Ui jk = Yiju T Dij e + &k (5.9)

This expression for n can be simplified by using compatibility to eliminate
the term ¢;; , as follows. First, the lattice rotation tensor ¢;; is rewritten
in term of the lattice rotation vector 6, as ¢;; = ¢;;;6,. By continuity of
displacement e,; m;; = e, u; i vanishes, and thus (5.9) reduces to

1
epikYik,j T €piueinOy,; + epei, ;=0  (5.10)

This relation may be inverted to give

1

— 1
60, =e€pirVix,j — —2—8piesjkysk’j + e, &k, (5.11)

and (5.9) can thereby be rewritten as
1

= _— — el __ _el el
Mki = Yie,j + Yiiok = Vik,i 5 €iki€spaYsq, p + &5k — &, + &, (5.12)

The strain gradient tensor m may now be decomposed additively into an
elastic part m® and a plastic part n® as

nﬁcli = 313'1,k - ﬁcl,i + 85:, i (5.13a)
and
, 1
njrl)ci = Yik,j T Yiiok — Vik,i ~ ‘z'ejkiequ‘)’sq,p (5.13b)

We note in passing that the lattice curvature 6, ; is closely connected to -
Nye’s measure of the total density of geometrically necessary dislocations,

a;;: upon making use of (5.6), the relation (5.11) can be re-expressed as
1 el
0; ;= a; — Eaijqkk + €€k (5.14)

The plastic strain gradient n},’c‘i can be expressed in terms of the sum of
the gradient slip over N slip planes as

o = 2 YU (5.15)
a
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where the resolution tensor s is given by

1
(a) = (a)p (@) (a)y(a) (a)y(a) (@)
Wpijk = 8,85, 'm;™ + 8,5, my; 8o s 'm;* + 2t” €

(no sum on «) (5.16)

B. STRESS MEASURES FOR ACTIVATING SLIP

We employ a work statement in order to define the appropriate stress
measures to activate yield on any slip system a. With the work conjugate
of the slip rate ¥(*) as 7(*) and the work conjugate of the gradient of slip
rate ¥ as Q{*), the plastic work rate per unit volume w? over the active
slip systems is

Wl = Y [r‘“))'/(“) + Qf,“’)”,‘,‘,')] (5.17)

a

In terms of macroscopic quantities, the internal plastic work rate follows
from (2.4) as

Wl = o, 8P + 7., 0P (5.18)

where é}}‘ and i)i‘}}c denote the plastic part of the strain rate &; and strain
rate gradient 1), , respectively. On equating the two expressions above for
the plastic work rate for arbitrary y(*) and 7", we obtain explicit
expressions for 7(*) and via (5.3 and 5.15),

7 = u{®o,; (5.19)

and
Q( *) = l/’ (:;l)c Tt}k (5 ‘20)

We note from (5.19) that the work conjugate of the slip rate ¥(* is the
resolved shear stress 7(*) on the slip plane and in the slip direction. In
similar fashion, the work conjugate of the gradient of slip rate ¥ is the
resolved double force per unit area Q*’ on the slip plane. We adopt the
notation that the slip gradient along the slip direction s® is %', the slip
gradient along the normal m®) to the slip plane () is ¥, and the slip
gradient along the transverse direction t(®) = s(*) X m® to the slip plane
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a is ¥. Then, upon substituting (5.16) into (5.20), the work conjugates to
.5,’(;)’ '5',(13) and ,y’(Ta) are

ol = s{s{Omr, : (5.21a)
Q5 = m{Vm(Ds(Vr, (5.21b)

and
o) = (t}“’m}“)s,(f) + s{ 0 Omi) — s§“)m§“)t,$“))7ijk (5.21¢)
respectively, with no sum on « in the expressions above.

The notation of statistically stored and geometrically necessary disloca-
tions suggests that the amount of strain hardening of a slip system is
governed by the accumulated slip and the accumulated slip gradient on
that slip system (and on all slip systems if latent hardening is taken into
account). By analogy with the classical theory, we assume that yield of a
given slip system (a) occurs when some combination of the resolved
stress-like quantities 7(*), O§), 042, and Q¢ attains a critical value. The
precise details of the formulation are not yet clear but are being pursued.

Appendix. J, Deformation Theory and Associated Minimum
Principles

We begin by writing the effective stress 3 as the work conjugate of &,
with
dw(&)

== (A1)

With the particular choice for w(&) given by (2.21) note that 3, is a power
law function of &:

@ 1/n
| wa

2 =2 =

'\,

Assume the solid is incompressible and can support Cauchy stress, couple

stresses and double stresses. Then, the work done per unit volume equals
the increment in strain energy,

8w = oy; 8¢j; + T/, dny (A3)
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where the primes denote deviatoric measures. The work relation above
and the definition (2.15) enables us to write the deviatoric stress (o', ') in
terms of the strain state of the solid as

5 ow s o0& 2 3 ’ (Ad)
U ooel T oel, 3 & G
and
aw 0& 3
Ti,.ik = o 2 T E 7‘{};) (Asa)
ant]k anijk I=1
where
2 .
TP = ’é;/fﬂ:,(;) (nosumonI)  (ASb)

Note that the three stress measures 'r'](k) are the unique orthogonal

decomposition of lk’ and they are the work conjugates to the three-strain
gradlent measures 7] J,?, giving

8w = of; d¢}; + ): [ on] (A6)

An explicit formula for the overall effective stress measure 2, is derived by
substituting (A4—A5) into (2.15), viz

32 = a0 + Z [/ 7"](,:)7,’1(,? (A7)

Minimum Principles Principles of minimum potential energy and mini-
mum complementary energy can be written in a straightforward manner.
The proofs are omitted as they follow immediately the development of
Fleck and Hutchinson (1993) for the non-linear couple stress solid.

Consider a body of volume V" and surface S comprised of the non-linear
strain gradient solid. In general the solid may be taken as compressible. A
stress traction ¢; and a double-stress traction r¢ act on a portion S; of the
surface of the body. (Recall the relation between surface tractions and
stresses given in (3.8) and (3.9).) Body forces are neglected in the current
development. On the remaining portion S, of the surface the displacement
is prescribed as uj and the gradient of displacement normal to the surface
is prescribed as Duj. Then, the following minimum principles may
be stated.
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Principle of minimum potential energy Consider all admissible displace-
ment fields u; which satisfy u; = u{ and Du, = Duj on a part of the
boundary §,. Let ¢; = %(u,-,j +u; ;) and 7, = u, ;; be the strain state
derived from u;, and take (o, 7) to be the stress field associated with
(e,m)via g;; = 9w/ de;; and 7,3, = dw/Jm,; . Define the potential energy
P(u) as

P) = wa(e,ﬁ)dV— fS [t°u; + r°Du,1 dS (A8)

where the surface integral is taken over that part S, of the surface of the
body over which the loading #¢ and r? are prescribed. Regard P(u) as a
functional in the class of kinematically admissible displacement fields u.
Then, provided w is strictly convex in € and w, the potential energy P(u)
attains an absolute minimum for the actual displacement field.

For the constitutive law described by (2.15) and (2.21) w is convex
in (e,m) and the potential energy (A8) is minimized by the actual
displacement field. :

Principle of minimum complementary energy In order to develop a mini-
mum principle for the complementary energy it is necessary to introduce
the stress potential ¢(o, 7) which is the dual of w(e, q),

¢(U, 'T) = </(.) Sij dO'U + j(; nijk dTijk = U'ijai]- + Tijknijk - W(S,'ﬂ)
zogo 2 n+1
n+1 20

Thus the strain state (e,m) is derived from the stress state (o, 7) via
Define the complementary energy C(o, 7) as

(A9)

C(o,t) = de)((r,'r)dV—fS[t,-uf + r,.Du°] dS (A10)

and consider all admissible equilibrium stress states (o, ) which satisfy
the traction boundary conditions ¢; = ¢/ and r, =r? on S;. Let u? and
Du; be prescribed on the remaining portion §,, and define (e, n) as the
state of strain associated with the stress (o, 7) via ¢; = d¢/do;; and
Nijx = 0®/37;j.. Then, provided ¢ is strictly convex in (o, %), the comple-
mentary energy C(o,7) attains an absolute minimum for the actual
stress field.
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