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Microbuckle initiation in fibre composites
under multiaxial loading

By J. Y. SHUt AND N. A. FLECK

Department of Engineering, University of Cambridge, Trumpington Street,
Cambridge CB2 1PZ, UK

The microbuckling strength of long fibre-polymer matrix composites under multi-
axial in-plane loading is analysed using a finite element code. Cosserat couple stress
theory is used to include the role of fibre bending resistance, with the fibre diam-
eter setting the internal length scale of the constitutive law. The matrix is treated
as a dilatant nonlinear elastic—plastic solid. Microbuckling is assumed to nucleate
from an elliptical region of initial fibre waviness. Both in-plane shear stress and
transverse stress significantly knock-down the axial compressive strength. The com-
pressive strength is found to be sensitive to both the magnitude of the fibre waviness
and to the physical size of the region of waviness in relation to the fibre diameter d.
The dominant geometrical feature is the length ¢ of the initial imperfection in the
transverse direction: the collapse strength exceeds the infinite band prediction by
less than 20% when ¢ exceeds about 200 fibre diameters.

1. Introduction

Fibre microbuckling is often the dominant compressive failure mechanism in long-
fibre polymer matrix composites; it occurs by the cooperative buckling of fibres
within a band and results in compressive strengths of only about % of the tensile
strength. There is now a substantial body of experimental and theoretical evidence
to show that microbuckling is an imperfection-sensitive plastic buckling event, with
the imperfection usually in the form of pre-existing fibre waviness (Argon 1972;
Budiansky 1983; Budiansky & Fleck 1993). Early theories of microbuckling such as
that of Rosen (1965) assumed that compressive failure is by elastic bifurcation and
occurs at a strength o. equal to the in-plane shear modulus of the composite, G.
This analysis over-predicts the compressive strength by a factor of about four. It is
unfortunate that much of the previous and current literature ignores this fact and
erroneously treats microbuckling as a linear elastic bifurcation event.

To date, most theoretical treatments of microbuckling are one-dimensional infinite
band localization analyses and fit approximately within the framework laid down
by Rice (1976) (see, for example, Slaughter et al. 1993; Budiansky & Fleck 1994).
Collapse is assumed to initiate from an imperfection in the form of a pre-existing
band of uniform fibre misalignment. Such infinite band kinking analyses neglect
fibre bending resistance and suffer from two main limitations: (i) they are unable to
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2064 J. Y. Shu and N. A. Fleck

account for the effect of the shape of the region of initial fibre misalignment upon
the compressive strength; and (ii) they provide no information on the effect of the
physical size of the imperfection upon the compressive strength since the assumed
constitutive law contains no length scale.

Fleck et al. (1995) overcame the second limitation by including the effects of fibre
bending resistance, with the fibre diameter d setting the material length scale. Fleck
& Shu (1995) overcame both limitations by developing a two-dimensional, finite
strain, finite element code for fibre microbuckling. In their analysis the composite is
treated as a ‘smeared-out’ anisotropic nonlinear continuum with an in-plane shear
and transverse response given by that of a flow-theory elastic—plastic solid. The axial
behaviour is taken to be linear elastic. Cosserat couple stress theory is used to include
the effects of fibre bending resistance; the fibre diameter d dictates the bending
resistance and serves as the dominant length scale of the microstructure. In the finite
element formulation, the nodal degrees of freedom are two in-plane displacements and
the rotation of the fibre cross-section 6;. Fleck & Shu (1995) performed a preliminary
study of the effect of imperfection size and shape upon the uniaxial compressive
strength. They considered an elliptical region of fibre waviness; the elliptical region
was assumed to have a width w of 20d along the fibre direction and a length £ in
the transverse direction in the range £/d = 0 to co. The fibre misalignment angle ¢
was assumed to increase smoothly from zero at the edge of the elliptical imperfection
to a maximum value of about 2° at the centre of the ellipse. They found that the
compressive strength o decreases with increasing £/d from Rosen’s elastic bifurcation
value o, = G at £/d = 0 to the infinite band compressive strength of about iG at
large £/d. The strength is midway between the two asymptotes at £/d ~ 20.

In the present paper we build upon the previous study of Fleck & Shu (1995) and
address the following three questions.

(1) For the case of an infinite band of initial waviness, what is the knock-down fac-
tor in collapse strength due to in-plane shear loading and in-plane transverse loading?

Slaughter et al. (1993) previously examined the effects of in-plane shear and trans-
verse tensile stresses on the compressive strength by employing a kinking analysis:
the fibres were taken as inextensible with vanishing bending resistance and were al-
lowed to rotate uniformly within the kink band. The accuracy of these assumptions is
now ascertained by carrying out more detailed couple stress calculations to account
for the effects of fibre bending and fibre extension.

(2) What is the sensitivity of the infinite band compressive strength to the nature
of the constitutive law assumed for the composite?

The previous finite element analysis of Fleck & Shu (1995) assumed that the in-
plane response of the composite is given by a flow theory version of plasticity. Fleck &
Jelf (1995) suggest that a deformation theory version of plasticity is more appropriate
and such a formulation is outlined below. Here, the infinite band compressive strength
is calculated for both deformation and flow theory versions of plasticity.

(3) How does the compressive strength depend upon the shape and size of the initial
region of waviness, for the case of general in-plane remote loading?

Fleck & Shu (1995) showed that the infinite band microbuckle response is a rea-
sonably good approximation to the collapse response from a finite region of fibre
waviness under uniaxial compression along the fibre direction, provided the trans-
verse length of the microbuckle exceeds about 200d. Here, we examine the accuracy
of the infinite band calculation for predicting the compressive strength under mul-
tiaxial loading; specifically, we determine the significance of imperfection size and
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Figure 1. (a) Definition of coordinates and base vectors. (b) Stress state of a representative
volume element of the fibre composite.

shape upon the collapse strength under general in-plane loading. The effect of fibre
volumetric lock-up (Budiansky & Fleck 1993) on the compressive strength is also
explored.

2. Problem formulation and finite element implementation

The fibre composite is treated as a smeared-out anisotropic Cosserat continuum,
with a bending resistance set by the fibre diameter d. Macroscopic stress and strain
quantities are used for the smeared-out homogeneous composite. The governing field
equations and constitutive law for the fibre composite is implemented via a finite
element code, using six noded triangular elements with three degrees of freedom at
each node (two displacements and one rotation). The finite element procedure is
based upon an incremental Lagrangian formulation of the general finite deformation
of the composite and can deal with both geometrical and material nonlinearities.
A version of the modified Riks algorithm (Crisfield 1991) is adopted to handle the
snap-back behaviour associated with the microbuckling response. An imperfection
in the form of fibre waviness is included in the formulation.

(a) Kinematics and definition of stresses

The undeformed and deformed configurations are shown in figure la. Cartesian
base vectors (e1, ;) are introduced within the plane of deformation and are oriented
such that the e; direction is taken to be parallel to the fibre direction of the fully
aligned unidirectional composite in the initial configuration. A material point is iden-
tified by the position vector @ in the initial undeformed configuration and undergoes
a finite in-plane displacement u to a position X in the current, deformed configura-
tion as shown in figure la. A material point is also subjected to an independent micro
rotation f; about the out-of-plane es-axis. We assume that the fibres have an initial
misalignment in the form of a rotation ¢(x) about the es-axis, and upon deforma-
tion the fibres rotate through an additional angle ¢(x) about the es-axis to a total
misalignment of ¢, = ¢ + ¢. It is convenient to introduce an orthogonal curvilinear
coordinate system (&1, &2) in the deformed configuration and to align the &; direction
with the deformed fibre direction (see figure 1a). The physical distance along the &;
direction is denoted by s; and the physical distance along the &; direction is denoted
by s2. The curvilinear coordinate system (&1, &2) is fully specified upon selecting arbi-
trarily a fibre as the base curve & = 0, along which £ = s;, and an orthogonal base
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2066 J. Y. Shu and N. A. Fleck

curve along which & = s,. In our development, tensors such as stress and strain will
be expressed in terms of their physical components with respect to the ortho-normal
unit base vectors (g1, €2); spatial gradients in the deformed configuration will also
be expressed in terms of the physical distances s; and ss.

Consider a representative material element in the deformed configuration (see fig-
ure 1b). The element is subjected to a longitudinal compressive stress component oy,
aligned with the fibre direction, a sliding shear stress 7, a transverse shear stress 7
and a transverse tensile stress or. The fibres embedded in the material offer bend-
ing resistance; thus the representative material element carries a bending moment
per unit area, or couple stress, m. The above stress measures are taken as Cauchy
stress components in the current configuration; they are related most naturally to
the orthogonal curvilinear coordinate system (&1, &2). On writing the Cauchy stress
o = 0,;€;€; in terms of the stress quantities defined above we have

011 = 0L, 099 = 0T, 091 = T8 and 012 = TT. (21)

We assume that the composite suffers a large deformation associated with large
fibre rotation, large shear and transverse strains and small normal strain parallel
to the local fibre direction. The strain rate is defined with respect to the current,
deformed configuration. The strain rate can be expressed straightforwardly in terms
of the orthogonal curvilinear coordinate system (&;,&z), as shown in figure la. The
fundamental kinematic variables in the problem are the velocity v(X) and the rate
of rotation of the fibre cross-section 6¢(X): this is analogous to Timoshenko beam
theory and to Mindlin plate theory. The velocity gradient D is simply D = Vv and
the curvature rate is £ = 06;/0s;. Then, following Fleck & Shu (1995), the internal
virtual work rate per unit current volume is written in the form of general Cosserat
theory as

W = 011 D11 + 099 Dag + 012(D1a — 65) + 021 (Day + 65) + mi. (2.2)

Now introduce the extensional strain rate é;, = Dy, the transverse strain rate ér =
Dsys and the sliding shear rate 45 defined by

¥s = D12 + Das. (2.3)

The rate of fibre rotation is given by ¢, = Dy5. Note that the total strain quantities
are simply given by integrating the strain rates over the deformation history. The
internal work rate (2.2) can be re-expressed as

W = oréL, + orér + Ts¥s + (’Ts - TT)(éf — D12) + mk. (24)

(b) The deformation theory solid

It remains to stipulate a constitutive law to relate stress rates to strain rates.
Budiansky & Fleck (1993) proposed the following deformation theory constitutive
law governing the transverse stress ot and shear stress 75 of

73 ar
Y$= =7 eT=pmAa 2.5
Gs(’l‘e) RQGs(Te) ( )
Here, R? = E1/G where Er is the transverse Young’s modulus and G is the in-plane
longitudinal shear modulus of the composite. The effective stress 7. and effective
strain -y, are defined as

Te = \/T8 + 02/ R2, 7= 1/7% + R2€%, (2.6)
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respectively, and are related through the simple shear constitutive law of

Te
o = ———. 2.7
Y= Gl (2.7)
Specifically, a Ramberg—Osgood law is adopted:
Ve Te 3 [ 7e "
=242, 2.8
w Ty 7 (TY> (28)

where (7y,vy,n) are taken to be material constants. The shear yield stress 7y and
shear yield strain vy are related via 7v = G-~yy. This gives a secant modulus Gg =

Te/7Ye of 1
ngy=a/(1+§<gjw_) (2.9)

It is convenient to express the constitutive law in an incremental form for im-
plementation within the large deformation framework. We write (2.5) in the rate
form

Tg = Gs’ﬁ’s -+ G/S’f'e’)’s, or = RQGséT + R2G,s7"eeT (2.10)
and substitute into the rate form of the first equation of (2.6),
TeTe = TsTs + o106/ R?, (2.11)
to get
Gg TS agr
fo = ————n | —4 —ér | . 2.12
K Gs — 1.Gg (’Te ¥+ Te er (2.12)

Here Gg = dGs/dr.. By substituting (2.12) into (2.10), we arrive at the constitutive
relations in rate form

. . T7.G:Gg 19 (T3 . oT .
-G SRl S ) —= , 2.13
s s’Ys+GS_Teg,S - (Te’Ys-i- - (2.130)
) ) 17eGsGs or (Ts. or.
:R2 eS N 21
oT Gsér + Gs— TeGIS —Te _Te Ys + —Te er ( 3b)

It remains to stipulate constitutive relations for the longitudinal stress rate 1, = 611,
the transverse shear stress rate 7 and the couple stress rate . We follow Fleck &
Shu (1995) and assume that 7r is given by

Fr = ¢G¢(D1g — 05) + (1 — &), (2.14)

where c is the fibre volume fraction and G is the longitudinal shear modulus of the
fibres. The couple stress rate is related to the micro curvature rate through

h = =FELd’k (2.15)
and the longitudinal stress in the composite gy, is given by
o1, = Eprér, (2.16)

where Fy, is the longitudinal modulus of the composite.

The finite element program has already been described in detail by Fleck & Shu
(1995) and a user manual has been produced (Shu & Fleck 1995). The code is implicit
and Lagrangian in nature and relies upon the principle of virtual work in rate form.
Details of the formulation for the general case of in-plane multiaxial loading are given
in Appendix A.

Proc. R. Soc. Lond. A (1997)
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(i) The role of volumetric lock-up

It is commonly observed that the fibres rotate within a microbuckle band until
the transverse strain within the band vanishes: at this point volumetric lock-up of
the matrix occurs and further rotation of the fibres within the band is prevented
(Budiansky & Fleck 1993). It is thought that the matrix can dilate by voiding but is
unable to accommodate compressive hydrostatic strains exceeding elastic magnitude.
Two versions of the finite element model are employed in the current study.

(1) Volumetric lock-up is neglected. It is assumed that compressive hydrostatic
strains can develop in microbuckled material and that the above combined constitu-
tive law remains valid for compressive transverse strains.

(2) Volumetric lock-up is included. We assume that lock-up occurs when the to-
tal transverse strain et approaches zero from a state of positive transverse strain.
Thereafter, the effective stress and effective strain for the deformation theory solid
are taken as

Te =175, Ye=|ys|, foror <0 (2.17)
and the transverse compressive response is given by
or = Ever, for op <0. (2.18)
The rate form of the constitutive law governing 75 and o after lock-up is
Ty = ——93—'313 and 67 = Erér. (2.19)
Gs — 7.Gy

Most of the results detailed below neglect lock-up. However, exploratory calcula-~
tions were performed to explore the significance of volumetric lock-up. In general, it
was found that lock-up has a negligible effect on compressive strength: when lock-up
occurs, the compressive strength is increased by less than a few percent. Specific
details are given in §§3 and 4.

(ii) Specification of the composite properties

In all calculations contained in this paper, the following material constants are
assumed unless stated otherwise: Ey, /7y = 4 X 10®, Ep/7y = 4 x 102, G/7y = 10,
n = 3 and ¢ = 0.6. The fibre longitudinal shear modulus G is assigned a value
of 4 x 10%. The above parameters imply that R = 2 and the shear yield strain
vy = 1%. The above values are representative of those for carbon fibre reinforced
epoxy composites.

(¢) Infinite band of imperfection
Consider a system with an infinitely long microbuckle band inclined at an angle

B from the transverse direction (see figure 2a). Following Fleck & Shu (1995), the
distribution of initial fibre misalignment ¢ is taken to be

(]_5 = JSO cos %ﬂ‘p, for p< 1, (2-20)

where p = 2z'/w and 2’ = zcosf + ysinB. Elsewhere the fibre misalignment ¢
is taken to vanish. Here, 3 is the initial orientation angle of the microbuckle band
relative to the transverse direction of the fibre composite and w is the initial band
width. For all computations in this paper, a typical misalignment of ¢o/vy = 4 is
assumed. Recall that vy = 1%, giving ¢ = 2.3°.

The focus of this paper is to predict the compressive initiation strength o, of a

Proc. R. Soc. Lond. A (1997)
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Figure 2. (a) Geometry of an infinitely long microbuckle band under remote multiaxial loading.
(b) The mesh for analysing an infinitely long microbuckle band of 8 = 0°; the mesh has 200
elements and 603 nodes. (¢) The geometry and boundary conditions for an infinite band analysis.

fibre composite under remote multiaxial loading, i.e. 055 = o° and 75 = 757 = 7°°.
The remote couple stress m® vanishes. For simplicity, we assume that the loading is
applied in a two-stage piecewise proportional manner, as follows. First, the remote
transverse stress and shear stress are increased in fixed proportion from zero to a
desired level. During this stage, no remote axial compression stress ¢} is applied.
Second, while holding the remote transverse stress and shear stress fixed, a compres-
sive stress of o = —o™ is applied. A pronounced snap-back response occurs after
a maximum value o, of 0> has been attained; a modified Rik’s algorithm is used in
order to follow the unstable equilibrium path (Crisfield 1991).

Only half of the geometry needs to be analysed due to rotational symmetry of
the problem about any arbitrary midpoint of the band. The correlation of fibre
misalignment along the band direction allows us to analyse the problem with a simple
mesh of width 1d and length 400d. A typical mesh for an infinite band analysis,
containing 200 elements and 603 nodes, with a total of 1809 degrees of freedom, is
shown in figure 2b. The boundary conditions are specified in Appendix B.

Proc. R. Soc. Lond. A (1997)
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(d) Elliptical region of imperfection
In general, a microbuckle originates and grows in a crack-like manner from an
initial defect, often in the form of a localized patch of fibre waviness. Following Fleck
& Shu (1995), we assume that the initial fibre misalignment angle ¢ is confined to an
ellipse of length £, width w and inclination 3, as defined in figure 3a. The distribution
of ¢ within the ellipse is taken as

¢=gocosimp, p<1, (2.21)

where p is defined by
p={(2a'/w)® + (2y' /€)*}/? (2.22)
in terms of the rotated coordinate frame

"=xcosfB+ysinfB and 3y = —zsinf + ycosp. (2.23)

The maximum value of fibre misalignment is taken as ¢o/yy = 4 and the fibre
misalignment is assumed to vanish outside of the ellipse.

The composite is subjected to general in-plane multiaxial loading, as sketched in
figure 3a. Consideration of rotational symmetry allows us to analyse only half of
the specimen (see figure 3b). The left-hand boundary of the mesh is adjacent to the
initial imperfection and is inclined at an angle 3. Antisymmetric displacements are
applied to this left-hand boundary, as shown in figure 3b. The remaining boundaries
are subjected to uniform traction. A typical mesh for the finite imperfection case has
been given previously by Fleck & Shu (1995).

3. Infinite band analysis

The simplest imperfection is in the form of an infinite band of fibre waviness, as
sketched in figure 2a. It is instructive to determine the sensitivity of the compressive
strength of an infinite band under multiaxial stressing to the following constitutive
details: (i) the choice between deformation theory solid and flow theory solid; and
(ii) the role of fibre bending resistance.

For an infinite band inclined at an angle 3 of more than a few degrees, the volu-
metric strain in the band is positive at maximum load and lock-up has no effect on
compressive strength. Lock-up does occur for a band inclined at a sufficiently small
value of 3. Additional calculations were performed to determine the significance of
lock-up for 8 = 0°. We found that the occurrence of lock-up increased the compres-
sive strength by less than a few percent unless the band was wide (w/d > 10) and the
loading involved a large component of remote shear (7°° /7y = 0.5). This exceptional
case is discussed further in §4 c. Results presented in the current section ignore the
effects of volumetric lock-up.

(a) Comparison between the predictions of deformation theory and flow theory

To date, most analyses of plastic microbuckling have assumed the composite be-
haves as a deformation theory solid (see, for example, Slaughter et al. 1993; Fleck
et al. 1995). Fleck & Shu (1995) adopted a flow theory version of the constitutive
law for the composite. Experimental evidence suggests that a carbon fibre reinforced
epoxy composite is neither an ideal deformation theory solid nor an ideal flow theory
solid, but is rather a compromise between the two theories (Jelf & Fleck 1995). It
is instructive to compare the predicted compressive strengths for the two theories.
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Figure 3. (a) Sketch of a fibre composite under remote multiaxial loading with an ellipse of

initial fibre waviness. The lengths of the two major axes of the ellipse are £ and w. (b) Sketch of
the geometry and boundary conditions for analysis of the finite imperfection.

Proc. R. Soc. Lond. A (1997)



2072 J. Y. Shu and N. A. Fleck

T T T T
09 SSae B8=30° .
\\\
X% i \\\\\ 7
=) ~~d
>
S)
7+ -
0 50
B Deformation theory N
— ——— Flow theory
@ 1 1 1 1
05
0 0.4 0.8
rlz,
T T T T
(=3
o)
I3
)

Deformation theory
-——~— Flow theory

06 (b) I 1 | 1
0 0.4 0.8

OTIRT,

Figure 4. Comparison between the predictions of deformation theory and flow theory for an
infinite band of initial waviness, with w = 20d, ¢o/yy = 4 and n = 3. (a) Knock-down factor
due to remote shear. (b) Knock-down factor due to remote transverse tension.

We address this problem by studying the response of an infinite band with an initial
width of w = 20d (recall that d is the fibre diameter) and initial fibre misalignment
angle ¢o/vy = 4.

The maximum compressive stress o, is calculated for a range of remote multiaxial
loading. Preliminary finite element calculations reveal that the uniaxial compressive
strength o0 differs by less than 0.1% for the two theories. The knock-down factor
for the compressive strength, o./0?, is plotted in figure 4a for the case of remote
shear and in figure 4b for the case of remote transverse tension. In all cases the dif-
ference is less than 10%. The predictions for deformation theory and flow theory are
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Table 1. Value of c1 for R =2

B(deg) n=3 n=5 n=10 n=100 1/a

0.408 0.590 0.723 0.767 1.0
5 0.407 0.588  0.716 0.769 0.985
10 0.405 0.567  0.705 0.748 0.943
15 0.387 0.543  0.662 0.716 0.881
20 0.354 0.513 0.615 0.681 0.808
25 0.328 0.469  0.565 0.636 0.731
30 0.283 0.425 0.520 0.589 0.655

Table 2. Value of ca for R =2

B(deg) n=3 n=5 n=10 n=100 tanf/a

0 0 0 0 0 0

5 0.098 0.141  0.150 0.179 0.086
10 0.182 0.228  0.303 0.298 0.166
15 0.231 0.318 0.385 0.410 0.236
20 0.277 0.396  0.467 0.508 0.294
25 0.319 0.453  0.537 0.587 0.341
30 0.336  0.498  0.605 0.657 0.378

in closer agreement when the remote loading is predominantly shear than when it is
transverse tension. Also, the agreement is generally better for an inclined band than
for a transverse band (3 = 0). Since it is commonly observed that a microbuckle
band is inclined at an angle, typically 10-30°, from the transverse direction, we con-
clude that the deformation and flow theories give similar predictions of compressive
strength. Henceforth, we shall assume the composite is a deformation theory solid in
the presentation of results.

(b) Comparison between kinking analysis and bending analysis

Slaughter et al. (1993) predicted the compressive strength under remote multiax-
ial loading by carrying out a so-called kinking analysis, i.e. neglecting the bending
stiffness of the fibres. Here we use our finite element code, which assumes a finite
fibre bending stiffness, to predict the compressive strengths under remote multiaxial
loading. In all cases we assume the initial fibre waviness is specified by (2.20), with
w = 20d and ¢ /vy = 4. For the case of a band inclined at 8 = 30°, the knock-down
in compressive strength is shown in figure 5a for shear loading and in figure 5b for
transverse tension. Parallel results are given in figures 6a,b for a transverse band
(8 = 0°). We conclude from figures 5 and 6 that the effect of fibre bending resistance
on the knock-down response is small. A similar conclusion was drawn by Fleck et al.
(1995) for the case of uniaxial compression.

The knock-down in compressive strength due to the presence of in-plane shear
stress and transverse stress is summarized in the form of contour plots, as shown in
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Figure 5. Comparison between the predictions of kinking theory and couple stress theory for
an inclined infinite band of initial waviness, with 8 = 30°, w = 20d, ¢/vy = 4 and n = 3.
(a) Knock-down factor due to remote shear. (b) Knock-down factor due to remote transverse

tension.

figure 7. Results are displayed for n = 3 and ¢o/yy = 4, and for two values of band
inclination, # = 0° and 8 = 30°. We limit results to the practical range of 7° =
V(7°)2 4+ (6°/R)? < 7y. It is noted that contour lines of constant knock-down
factor are remarkably straight for the inclined band (8 = 30°) and are reasonably
straight in most of the domain for the transverse band (8 = 0°). Thus, the data are

well approximated by a linear relation of the form

Oc T o
S =l-a—-c5—,
o Y Rry
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Figure 6. Comparison between the predictions of kinking theory and couple stress theory for

a transverse infinite band of initial waviness, with 8 = 0°, w = 20d, ¢o/yy = 4 and n = 3.

(a) Knock-down factor due to remote shear. (b) Knock-down factor due to remote transverse

tension.

where the parameters ¢; and ce depend upon the particular values of # and n, as
detailed below. (A parametric study indicated that the dependence upon R and
on initial width of band is slight.) Relation (3.1) is a generalization of the formula
derived for a rigid perfectly plastic solid by Slaughter et al. (1993)

Oc T o
L 2T ¢ 3.2
o ary  aTy an, (3.2)

where a = /1 + R2tan? 3. Values for ¢; and ¢, are given in tables 1 and 2, re-
spectively, for R = 2. The last column in tables 1 and 2 is the coefficient for the
rigid perfectly plastic solid given by (3.2). The rigid perfectly plastic results gives an
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Iz,

Figure 7. Contour plot of the knock-down factor on the compressive strength for an infinite band
of initial waviness under general multiaxial loading. 8 = 0° and 30°, w = 20d, ¢o/vy = 4 and
n = 3.

approximate guideline for the knock-down in compressive strength due to multiaxial
stress.

We note from tables 1 and 2 (and from figures 5 and 6) that the knock-down factor
0./0? for shear stress and transverse stress decreases with increasing n for all values
of B considered. For any fixed value of n, the knock-down factor for shear stress
increases with increasing (3, whereas the knock-down factor for transverse tension
decreases with increasing [.

4. Finite imperfection

Next, we assume that an initial imperfection exists in the form of fibre misalign-
ment confined to an ellipse as described by equations (2.21)—(2.23) and shown in
figure 3a. The effect of multiaxial loading on the compressive strength is explored
for the elliptical imperfection in the following subsections. First, the compressive
strength is given as a function of length and width of the ellipse. The role of the
shape of the imperfection is addressed by comparing the behaviours for an ellipse,
a circle and an infinite band. The effect upon the compressive strength of the phys-
ical size of the imperfection is then explored. Finally, the effect of multiaxial stress
is summarized in the form of contour plots of the knock-down factor for compres-
sive strength. Unless otherwise stated, the calculations reported ignore the effects of
volumetric lock-up.

(a) The effect of the aspect ratio of the elliptical imperfection upon multiazial

strength

First, we consider an elliptical imperfection of fixed width w = 20d, oriented at
an inclination 8 = 0°. The compressive strength is shown in figure 8 as a function

Proc. R. Soc. Lond. A (1997)



Microbuckle initiation in fibre composites under multiaxial loading 2077

—T®=0P=0
08 -——— 7%1,=0,07/RT, =05
- ——- T%T,=05,07/RT,=0
.\\
© I ~.
& .
0.4t ~. I
—_ -— -~
a,w 0,@ 3
R -— —— =
:I:@ Infinite band
. - asymptotes
0.0 sl L L4l f [ I TS |
10' 107 10°
£/d

Figure 8. Compressive strength as a function of the length £ of an elliptical region of fibre
misalignment under remote multiaxial loading. 8 = 0°, w = 20d, ¢o/yy =4 and n = 3.

of length ¢, for a selection of values of 7° and o$°, with n = 3 and ¢p/yy = 4.
The limit £ — 0 corresponds to the case of vanishing imperfection, while the limit
£ — o0 is the infinite band result. In the case of uniaxial compression at £ = 20d, the
compressive strength o, is midway between the Rosen elastic bifurcation value (for
vanishing imperfection) and the infinite band result. At £ = 200d, the compressive
strength is only about 20% higher than that of an infinite band. Similar conclusions
are drawn for the case of superposed remote shear and remote transverse tension.
These findings imply that a relatively small region of fibre waviness leads to a serious
reduction of the compressive strength. For example, the diameter of carbon fibres
is of the order of 5 pm for commercial carbon fibre-epoxy composites. This implies
that an imperfection of length 1-2 mm results in a compressive strength comparable
to that of an infinite band.

The effect of the width w of an elliptical imperfection upon the compressive
strength is given in figure 9, for a range of values of fixed length ¢. Again, results
are shown for a selection of multiaxial loading, and in all cases 8 = 0, n = 3 and
@/vy = 4. It is clear from figure 9 that there is little effect of width of imperfection
upon the compressive strength, for all values of w and ¢ considered. The dominant
geometrical dimension in influencing compressive strength is the length £ of the band,
as discussed above. Note that no calculations were performed for w/d < 4: we antic-
ipate the compressive strength to increase sharply with diminishing w at w/d < 4.
For example, in the case of uniaxial compression, the compressive strength attains
the Rosen limit o, = G as w — 0.

(b) The effects of the shape and size of the imperfection upon multiazial strength

The effects of the shape and size of the region of fibre waviness upon the uniaxial
compressive strength are now addressed. Three geometries of initial imperfection are
considered, as shown in the insert of figure 10 ((1) infinite band of width ¢ inclined
at B = 0° (2) circle of diameter ¢; (3) ellipse of width 20d and length ¢, oriented at
B8 =0°).

All three shapes of imperfection are described by (2.20)—(2.23), with ¢o/vy = 4.
The compressive strength as a function of imperfection size of each of the three shapes
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Figure 9. Compressive strength as a function of the width w of an elliptical region of fibre
misalignment under remote multiaxial loading. 8 = 0°, ¢o/vy =4 and n = 3.
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Figure 10. Effect of imperfection shape upon uniaxial compressive strength. 8 = 0°, ¢o/yy = 4
and n = 3.

is shown in figure 10. We note that the infinite band prediction is significantly weaker
than the other shapes for the £/d values considered. In the limit of large £/d (greater
than about 30 for the infinite band and greater than about 300 for the circle and the
ellipse), the strengths converge to the asymptote given by the kinking solution (58)
of Budiansky & Fleck (1993). It is instructive to compare the strengths for the ellipse
and for the circle at £/d > 20. Then, the circle circumscribes the ellipse; the circular
patch has a larger physical size but gives less of a stress concentrating effect than
the ellipse. These two factors compete, and result in the circle being slightly stronger
than the ellipse, for the same value of £/d. The main practical conclusion to draw
from figure 10 is that compressive strength is significantly influenced by both the
shape of the imperfection and by the size in relation to the fibre diameter d.
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Figure 11. Effect of imperfection size upon compressive strength for multiaxial loading. Two
shapes of imperfection region are considered: a circle of diameter £ and an infinite band of width
£ at an inclination angle of 3 = 0°. For both geometries, ¢o/vy = 4. The curves neglect the
effect of lock-up and the discrete points (e) include the effect of lock-up. (@) » = 3 and (b)
n = 100.

The effect of physical size of imperfection upon multiaxial strength is now consid-
ered. Attention is focused on a circular imperfection of diameter £ and an infinite
band of width £. The compressive strength for a selection of (7°°, o$°) values is given
as a function of £/d in figure 11a for n = 3 and in figure 115 for n = 100. A size effect
is clearly demonstrated: as ¢/d increases the compressive strength decreases to the
kinking solution given by Slaughter et al. (1993).

(c) The effect of fibre lock-up

So far we have neglected the phenomenon of volumetric lock-up of fibre from our
treatment. It is instructive to address the effects of lock-up upon the compressive
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Figure 12. Contour plot of the knock-down factor for compressive strength, for a circular domain
of fibre waviness under general multiaxial loading. The diameter of the circle is 20d, ¢o /vy = 4,
n = 3 and 100.

strength under general multiaxial loading. Here, we examine the effect of lock-up
on the compressive initiation strength for a circular imperfection and for an infinite
band. For the case of an infinite band, from simple geometrical argument, it is known
that the transverse strain within the microbuckle band vanishes and lock-up occurs
at a rotation of ¢ = 2(8 — @o) (Budiansky & Fleck 1993). For a band inclined at an
angle 3 of more than a few degrees, lock-up is not yet attained at maximum load
and thus the onset of lock-up does not affect the compressive strength. However,
lock-up takes place immediately for the case of 3 = 0°. Here we choose 3 = 0° for
an infinite band analysis and present results in figure 11a for the case of lock-up
neglected and lock-up included in the analysis. It is found that lock-up significantly
increases the compressive strength of an infinite band only for the case of a wide
band ¢/d > 10 and with a large value of superposed remote shear. In all other cases,
lock-up has a negligible effect on compressive strength. Results on the effect of lock-
up are included in figure 11a for a circular imperfection under multiaxial stressing.
The effect of lock-up is insignificant.

(d) Map of knock-down in strength for a finite imperfection under multiazial
loading

Contours of the knock-down factor for the compressive strength due to in-plane
shear and transverse tension for the case of a circular patch of waviness, of diameter
¢ = 20d, are plotted in figure 12 for n = 3 and n = 100. We conclude from figure 12
that both shear stress and transverse stress significantly knock-down the compressive
strength. The contours are approximately parallel but curved: there is a nonlinear
coupling between the shear stress and transverse stress in knocking down the com-
pressive strength. In the absence of transverse tension, the reduction in strength due
to remote shear is fairly insensitive to the value of the strain hardening exponent and
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to the precise geometry of the imperfection (compare figure 12 with the analogous
map for the infinite band, figure 7). The knock-down due to transverse tension is
sensitive to both the value of n and to the geometry.

5. Conclusions

The initiation of microbuckling of fibre composites under multiaxial loading has
been investigated using a finite deformation finite element code based on the couple
stress theory. As far as the initiation of microbuckling is concerned, deformation
theory and flow theory constitutive laws give a negligible difference in compressive
strength. Remote multiaxial stresses knock-down the compressive strength of an
infinite band in an approximately linear fashion and an empirical formula is given to
quantify the knock-down effect associated with the multiaxial stress. The initiation
of microbuckling from a finite region of fibre misalignment has also been studied. The
dominant geometric feature of the finite imperfection is its length in the transverse
direction. An elliptical region of fibre waviness, of length exceeding 200d, behaves
as an infinite band. The phenomenon of fibre lock-up is incorporated in the finite
element code and generally has little effect upon the initiation strength for both a
finite imperfection and for an infinite band.
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Appendix A. Rate form of principle of virtual work

Fleck & Shu (1995) have derived the following rate form of the principle of virtual
work:

J{(6ij + 0i; Drk + Onjerit + oireridr — o Dii) Wi
2

+(d’¢j -+ O'ijDkk)sjiéef + (m -+ ngg)énl} dfy = / (tJ&U’J + q50f) dSp. (A 1)
So

Here, ¢;; is the two-dimensional permutation symbol and W' is the spatial gradient
of the virtual displacement éu, such that W = Véu; J is the determinant of the
deformation gradient tensor F' and all components are physical components defined
in an orthogonal curvilinear system co-rotating with the fibres. A subscript 0 denotes
the undeformed configuration. Assume that an infinitesimal surface area vector d.Sj
in the undeformed configuration is deformed into d.§ in the current deformed con-
figuration via F'. The nominal traction ¢; (j = 1,2) and torque ¢ per unit area of
the undeformed surface are related to the true traction 7; and surface torque @ per
unit area of the current deformed surface by

In a previous study, Fleck & Shu (1995) prescribed the loading in terms of t; and g.
Under uniaxial compression, the remote surface area does not deform, hence ¢; equals
T;. Under multiaxial loading, the remote surface rotates and stretches; consequently,
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the nominal and true tractions differ. In the current study the loading is prescribed
in terms of the true traction components.

Now suppose a section, S;, of the boundary is subjected to traction T (j = 1,2)
and torque () per unit surface area of the current deformed configuration given by

T, = ni(or?j () + Aoyi(x)), Q= nl(mO(w) + A\Am(x)), (A3)

where \ is a global loading parameter changing during the course of deformation.
Here, n; is the ith Cartesian component of the surface unit normal vector. The ith
Cartesian component of the surface unit normal vector in the undeformed configu-
ration is denoted as n?. The nominal traction vector and the nominal couple stress
traction follow from (A 2) and (A 3) as

t;dSo = dS;(of; + MAoy;) + Aoy; dS;,  ¢dSo = dSy(m° + AAm) + AAmdS;, (A4)
where dS; = n; dS. Now

dS = JF~TdS,, (A5)
where the superscript —T denotes the transpose of the inverse of the tensor, and so
dS = (JF~T + JF~T)dS,. (A6)

On substituting J = JDy, and F~T = —DF~T into the above equation, we find
that

dS = J(Dy F~" — DF~T)dS,. (A7)
The rate form of the principle of virtual work follows from (A1), (A4) and (A7) as

/ J{(64 + 04 Dk + Okjeridy + Oinride — 0k Dii)Wij + (035 + 045 Dir )€:60¢
20

+(m + szg)(SKJl} df2y — J(Fﬁlek — Fﬁchik)n?(O,?k + )\Aoik)éuk dS,
So

- / J(F;1' Dy — F3' Dyg)n(m® + AAm)66; dSo
So

=X [ J(AoyF'nd6u; + AmF'n266;) dSo. (A8)
So
The above rate form is convenient when the remote Cauchy stress is a prescribed
function of time. For example, (A 3) provides the appropriate boundary condition
for an infinite band subjected to a prescribed remote stress.

Appendix B. Boundary conditions for infinite band analyses

Slaughter et al. (1993) have shown that under remote shear and transverse stresses,
an infinitely long microbuckle band rotates slightly and the band angle changes
during the deformation. After a finite deformation, any two material points which
are initially aligned along the band direction remain aligned along the current band
direction. Consider representative nodes C’ and D’ along the initial band direction,
as shown in figure 2¢. Their relative displacement equals the relative displacement of
the two corner nodes C' and D on the right-hand side of the mesh; also fibre rotations
at C' and D’ are identical. Thus,

uf —uP =uf —uP and 6F =06 (B1)

2 7 7 2
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The nodal forces and nodal torques at these two nodes are related by

T¢ = —TP" and Q° =-Q". (B2)

K3

For a particular node C’ located one node along from the end node C, instead of
enforcing its transverse nodal force to obey (B2), the transverse displacement of the
node C’ is assumed to follow the constraint

ugl =u20 (B3)

to remove the rigid body rotation of the composite. This ensures that remote fibres
remain straight.

Now consider the boundary conditions on the two ends of the mesh. The nodal
forces and nodal torques on nodes C, D and E at the right-hand boundary are
prescribed in terms of the remote stress state, as laid down in Appendix A. To
remove rigid body motion node O on the left-hand boundary is fixed (u; = up = 0);
the torque also vanishes at O. The relative displacements of nodes A and B are
equated to those of C' and D, and the fibre rotation at A is equated to that at B.
Further, the sum of the nodal forces at A and B balance the sum of the nodal forces
at C and D. Finally, the sum of the nodal torques on A and B vanishes.
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