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Abstract. The surface force apparatus (SFA) comprises thin molecularly smooth
mica sheets glued to glass cylinders, which are pressed into contact with their axes
at right angles. It is frequently used, in conjunction with the Johnson—Kendall—
Roberts (JKR) adhesion theory, to extract the surface energy of the contacting
sheets. This procedure is open to possible error since the JKR theory is based on
the contact of homogeneous, isotropic elastic cylinders. This paper extends the
JKR theory to the layered structure of the SFA. Two approaches have been
followed: (i) direct calculations for prescribed values of the layer thickness and
elastic moduli; (ii) an experimental calibration procedure for an existing apparatus.

1. Introduction

The surface force apparatus (SFA) was developed by Tabor
and Winterton (1969) and Israelachvili and Tabor (1972).
It comprises thin sheets of molecularly smooth mica, or
similar material, glued to cylindrical glass lenses of equal
radii, which are then pressed into elastic contact with
their axes at right angles. A Hertz-type circular area of
contact ensues whose radius a can be measured by direct
observation through the glass, glue and mica. The mica
surfaces may be ‘dry’ or separated by molecularly thin
films of fluid. In view of the smooth and intimate nature
of the contact, adhesive forces are easily detectable, so that
an important use of the apparatus lies in the measurement
of surface energy (e.g. Israelachvili 1991, Mangipudi et al
1994).

In the presence of adhesive forces the contact size
is larger than would be predicted by the Hertz theory;
contact is maintained at zero applied load and a tensile
force—the ‘pull-off’ force P.—is needed to cause the
surfaces to snap apart. In a typical experiment the contact
size decreases as the load is reduced from a compressive
(positive) to a tensile (negative) value until pull-off occurs.
In order to deduce surface energies from such observations
it is necessary to fit the measurements to an appropriate
continuum mechanics model of the process. The so-
called JKR theory (Johnson, Kendall and Roberts 1971)
is commonly used for this purpose. It is asymptotically
correct when the elastic deformation caused by the surface
forces is large compared with their effective range of action.
This condition is satisfied when the parameter (Tabor 1977):

Rw? \'/3
w=(grg)
E*2z2

exceeds a value of about five, where R = radius of each
crossed cylinder, E* = effective elastic modulus, zo =

0022-3727/97/121710+10$19.50 © 1997 IOP Publishing Ltd

equilibrium separation of the surfaces and w = work of
adhesion, i.e. w = Ay = y1 + y2 — Y12, where y; and
y, are the surface energies of each surface and y;, that of
the interface. In the SFA the low elastic modulus of the
glue between the mica and glass generally ensures that the
above condition is amply satisfied with p > S.

~ However a problem arises with the effective modulus
E*. The JKR theory is based on the elastic analysis of two
homogeneous and isotropic half-spaces with unequivocal
elastic constants: Young’s moduli E; and E5, and Poisson’s
ratios v; and v, whereupon E* = [(1 — v?)/E; + (1 —
v2)/E;]"'. The contacting solids in the SFA, on the
other hand, comprise layers having widely different elastic
constants. Under load, as the contact size increases in
relation to the (fixed) thickness of the layers, the effective
modulus of the system changes. At a sufficiently light load
the compliance will be that of the superficial mica sheet;
with increasing load and contact size, the compliance will
be increasingly dominated by the glue and subsequently the
glass substrate.

This paper seeks to extend the JKR adhesion theory
to a layered elastic system. Two separate approaches
are followed. In the first approach it is assumed that
the thickness of the layers and their individual elastic
constants (taken to be isotropic) are known at the outset.
In practice, however, this information is seldom known
precisely, particularly in relation to the layer of glue. In
the second approach a procedure is proposed for calibrating
the apparatus in situ to find the effective modulus E7 as a
function of contact radius a. In this approach no knowledge
of the thickness or moduli of the layers is required, but
it must be possible to (i) modify the surfaces during
calibration so that adhesion between them is negligible and
(ii) to be able to measure both the size and compliance of
the contact.
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Figure 1. The JKR theory. (a) Contact pressure p(r) is made up of two terms: Hertz pressure p;(r) and adhesion traction
pa(r). (b) Relation between load P and displacement §: application of P; — — — OA; application of P, — — — AC. (c) Variation

of contact radius with load (equation (10)).

2. The JKR theory

A brief outline of the JKR elastic half-space theory will be
presented as a starting point for the analysis of the layered
system. Within the approximations of the Hertz theory the
contact of two identical crossed cylinders is equivalent to
the contact of a rigid frictionless sphere of the same radius
with a plane surface of modulus E*. The normal load is
made up of two terms (see figure 1(a)): (i) an adhesionless

load P, associated with the Hertz pressure

()]

and (ii) an adhesive load P, associated with the pressure:

(]

3P
2ma

P = — 1

r

a

P,

2ra?

pa(r) = — 2
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Figure 2. Indentation of a three-layer half-space by a
smooth rigid sphere with adhesion.

which will be recognized to be that due to a flat punch of
radius a. The superposition of these two tractions is shown
in figure 1(a), and the net contact load P = P, — P,. A
plot of load against displacement & is shown in figure 1(b).
The application of the load P; in the absence of adhesion
follows the compliance curve from O to A. The adhesive
(negative) force P, is then applied, keeping the contact size
a constant, which results in the linear compliance relation
AC, having the gradient (dP;/d8;),. The Helmholtz free
energy Ur of the system may be expressed by

Ur =Ug+ Us

where Ug is the elastic strain energy in the system at point
C in figure 1(b), and Uy is the surface energy associated
with a contact of radius a, i.e. Us = —ma?Ay = —wa’w.
The equilibrium value of a is then given by

dUr  (3U:\ Us (dUg
T _(ZZE) L858 _(Z2E) _onaw=0 (3
da (aa )5+da (aa )8 Taw )

where the term (8Ug/da)s is the rate of change of
elastic energy with a, keeping the displacement § constant
(‘fixed grips’) and is shown by the shaded area CABC’ in
figure 1(b). In the limit:

g\ 1 ,d (dP,
ZE) = s — 62— (211
(da)s 2 ’da(dal)

_1( P, \*d [dP, "
~2\dPy/ds, ) da \ds; ) ¢
Substituting in equation (3) gives
1 P, 17 d (dP) _ )
4a |dPjds, | da \ds ) =™

When the two contacting cylinders are homogeneous and
isotropic (JKR theory) the Hertz relationships apply, so that
the compliance curve in figure 1(b) is given by

4E*a® 4
p= = —E*R'?%5)"? 6
'"T3R T3 ! ©
whereby
dp
— =2aE*. 7
&, a Q)
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Figure 3. Axi-symmetric finite-element mesh for
indentation of layered half-space.

Note that this contact stiffness is the same as that for a flat
rigid punch. Substituting in equation (5) gives

P? = 8nwE*d’ ®
so that the net applied load is given by:

4E*a3
3R

P=P —-P, = — @BrdPwEN2. (9)
This is the JKR relationship between applied load P

and contact radius a. In non-dimensional variables P =
P/37wR and a = a(4E* /9w wR?)'/3 it reduces to

P =a>—2a3. (10)

The pull-off force can be shown to be P, = %Jt wR.

An alternative approach to the JKR analysis is through
the concepts of linear elastic fracture mechanics (Maugis
and Barquins 1978). The singularity at r = a in the
adhesive traction of equation (2) can be expressed by a
mode I stress intensity factor:

P,

2a/ta’

For an equilibrium ‘crack’ the strain energy release rate is
given by

K =

amn

K}
T 2E*

Eliminating K; from (11) and (12) yields equation (8).
Equation (12) and equation (5) respectively will form the
bases of our two separate approaches to the analysis of
adhesion in a layered system.

G

= Gr.‘ = Ww. (12)
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Figure 4. FE calculations of non-dimensional adhesionless load f = (P; R/E;h?) as a function of contact size and other

parameters (equation (13)).

3. Finite element analysis of layered system

The layered system is shown in figure 2. It comprises
a substrate with superficial layers of thickness hq, h,.. ..
The corresponding elastic constants of the layers and
substrate are E; and v;. The approach follows that of
the JKR analysis: the superposition of the solution to an
adhesionless contact and that of a flat rigid punch having
the same contact size. In the layered system equation (6)
for adhesionless contact (Hertz) may be rewritten in the

form
E] Ej }

PR a h;
= PR R R S 13
{h, m' U EFEr (t3)

Efa3
In the case of the flat punch, equation (11) becomes

P, {a h, E} E }

LR B - Y S 14
K@~ é\n'h U ENE: (14)

Substitution for K; in terms of w from equation (12)

gives

PR _ (2wR2)‘/2 (h,)3/2 { a hy E} E ]

El*as — El*h? a g hl b hl 9 o E]*’ E:’ ...
_ (ZwR2>‘“ { a b E Ej } (15)
= E;‘h? g hl,hl,...ET,Er,... .

The net applied load P 1is then given, as before,
by
PR PR PR

Eia3 = Eia® Ead =f-es (16)

where @ = (2wR?/E;h})!/? is a non-dimensional measure
of the strength of adhesion. When w = 0,0 =
0 and equation (16) reverts to the adhesionless case
expressed by equation (13). For any specific geometry
and elastic constants the functions f(a/h;) and g(a/h;)
are evaluated by finite element analysis as described
below.
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Figure 5. FE calculations of the non-dimensional adhesion force g = (P,/K; h,a/z) as a function of contact size and other

parameters (equation (14)).

The ABAQUSTH finite element (FE) program is used for
the linear elastic numerical analysis of the system shown
in figure 2. The FE mesh and far-field boundary conditions
are shown in figure 3. The layers are taken to be perfectly
bonded. A large domain, 100-150 times the contact radius,
is discretized using axi-symmetric 8-noded quadratic and
6-noded triangular elements. A particularly fine mesh is
required in the region close to the edge of contact radius
r = a in order to obtain reliable values of the stress
intensity factor K; at that point. Stresses at the remote
boundaries are negligible.

To simulate indentation, the normal displacement

2

u(ry=28-— R

is decomposed into u, = & and u = —r?/2R, and applied
separately. In non-dimensional form u, reads:

on (r <a) a7

a? a2 2

t ABAQUS, HKS Inc., Rhode Island, USA.

Ru, R 1 (;)2 a18)
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The displacements in equation (17) give rise to loads P’ and
P” and to stress intensity factors K; and K atr = a. The
loads are found by summing the reaction forces at the nodes
lying within the contact area. The stress intensity factors
were found by an extension of the method due to Parks
(1974) and Li et al (1985), which is described in appendix 1.
The displacement u/,(r) is that due to a flat punch in which
the displacement &', the load P’ and the stress intensity K
are in direct proportion. In an adhesionless contact there is
no singularity at r = a, so that K; + K; = 0, whereupon
the adhesionless load P is given by:

KII
=P —(=L)P. 19
P, (K;) 19)

Computing P; by equation (19) for a series of values a/ h;
yields the function f(a/h). The function g(a/h,) is given
directly by:

P, P’ a
K]a3/2 - K;a3/2 - g (E) . (20)
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Figure 6. Variation of non-dimensional contact area A = 7 42 as a function of non-dimensional load P = P/3n wR, for a range
of values of the non-dimensional work of adhesion « = (2wR?/E;h3)'/2, for the case h»/hy = 10.

3.1. Numerical results

Finite element calculations have been carried out for a
three-layer system representing a thin hard surface layer
such as mica attached to a glass substrate with epoxy
glue. Guided by the characteristics of the SFA used by
Israelachvili (1991), the thickness of the layers and their
elastic properties used in the computations are given in
table 1. The radius R of the cylinders was taken to be
20 mm and the contact radius was varied through the
range 0.01-200 um, but the presentation of results does not
restrict their applicability to the absolute parameter values
used in the calculations and quoted in table 1.

The functions f(a/h,) and g(a/h;) are plotted in
figures 4 and 5 for various values of hy/hy, E5/E} and
E3/E}. For a/h; < 0.3 deformation is confined to the
surface layer and f(a/h;) takes the value 4/3 given by
equation (6). With increasing indentation size, f(a/h;)
decreases in response to the compliance of the layer of
glue, until the stiffening provided by the glass substrate

becomes significant. A similar variation is found in the
function g(a/h;).

The net load P(= P, — P,) is obtained from
the functions f and g by equation (16) with @ as a
parameter. Transforming (16) to the JKR variables defined
in equation (10) provides the relationship between the
normalized load P and contact radius a:

P =33(f —ad). @n

Curves of contact area A = ma? plotted against load P
are presented in figure 6. They are of the same general
shape as the JKR curve (equation (10) and figure 1(c)):
contact at zero load and a critical adhesive (negative) load
P., at pull-off, but showing wide variations in magnitude
with adhesion parameter o, layer thickness and moduli.
The values of the normalized pull-off force P, have been
measured from the curves and plotted aganist « in figure 7.
The adhesion parameter has a significant effect on P,
which ranges from zero to 0.62 compared with the JKR
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Table 1. The parameter values used in calculations.

Young’s modulus

Layer no Material (GPa)

Poisson’s  Layer thickness
. ratio (pnm)

1 mica
2 epoxy glue 2
3 glass substrate 70

10, 20, 90, 180 0.3 2

0.4 10, 20, 30
0.2 —_

100

a

Figure 7. Non-dimensional pull-off force P, = P/3rwR as
a function of the non-dimensional work of adhesion
o = (2wR?/E;h3)"2,

value of 0.5. The influence of layer thickness h,/h; was
found to be negligible within the numerical scatter. The
effect of the modulus ratio E}/E3 is not large either,
particularly for Ef/E; > 20.

4. Experimental calibration of effective modulus

In this section we propose an experimental calibration of the
effective elastic modulus of an existing apparatus, without
prior knowledge of the thickness of the layers or moduli
of the layer materials. The ‘effective modulus’ E} is
defined as the modulus of a homogeneous isotropic half-
space which would exhibit the same stiffness dP/ds as the
layered system. It is clearly a function of the contact size a.

In order to carry out this calibration it is necessary to
modify the surfaces such that adhesion between them is
negligible, and to be able to measure the approach of the
two surfaces § due to their elastic compression. In this way
the adhesionless compliance curve, P; versus §;, shown
diagrammatically in figure 1(b), is obtained experimentally.
Simultaneous measurements of the contact radius @ must
also be made. By equation (8) we can then write:

N 1 dp
E(a) = % 4o, (22)
Thus determination of E} requires differentiation of the
experimental compliance curve. The accuracy of this
process could be significantly improved if the technique
were employed of applying an oscillating force of
small amplitude to the contact to measure the derivative

1716

(dP,/d8;) directly (Pethica and Oliver 1987, Georges et al
1993).

To demonstrate the validity of this procedure we
have evaluated E(a/h;) from equation (22) by numerical
differentiation of the compliance relationship P;(8)
obtained from the FE computations. The results are
shown by the points in figure 8. For comparison
EX(a/h1) has been calculated directly from the FE
computations of indentation by a flat punch, for which
dP,/d8; = P’/§, shown by the full curves in figure 8.
It is recognized, of course, that differentiation of an
experimental compliance curve will show more scatter than
our numerical results, but the calibration procedure outlined
above is a ‘once and for all’ experiment on any given
apparatus, and can therefore be carried out with care and
thoroughness.

The behaviour during an adhesion experiment follows
from equation (6). Substituting from equation (22) into (6)
gives

*\ 7-1

P? = (P, — P)? = 8nwa’EX(a) [1 + 1_?— (ddi‘ )] .
(23)
P(a) is found from an adhesion experiment having the
form illustrated in figure 6; P;(a) is obtained from
the adhesionless calibration experiment. The work of
adhesion w (or Ay) is then obtained by fitting the results
to equation (23). It will be seen that equation (23)
requires a further differentiation. Values of the product
(a/E})(dE} /da) obtained from numerical differentiation
of our results given in figure 8 are shown in figure 9.
It is evident that the second term in the bracket in
equation (23) is small for 1 < a/h; < 10, ie. in the
region where it crosses the axis. This is the range where the
assumption of constant E7, obtained by the usual procedure
of fitting the JKR curve (equation (10)), would involve least

erTor.

5. Conclusions

Adhesion of the system of elastic layers used in the SFA
has been analysed and compared with the JKR analysis
for a homogeneous isotropic half-space. The adhesion
characteristics, including the pull-off force, depend upon
an adhesion parameter o = (2wR?/E}h3})!/? as well as on
the ratio of thickness of the layers h,/h;, and the ratio of
their elastic moduli (E}/E3) and (E}/E3).

Two approaches to the problem have been considered.
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Figure 8. Effective elastic modulus E; for the case hy/h; = 10. Curves from the FE flat punch solution; points from the

gradient (dP,/ds,) of adhesionless compliance curve.

(i) FE analysis of the system where the thicknesses and
elastic moduli of the layers are known in advance. Results
are presented for varying (h2/h,), (Ef/E3) and (EY/E3),
from which required values can be interpolated. The pull-
off force P, is found to depend critically upon the adhesion
parameter «, but not to a large extent upon the thickness
or moduli ratios.

(i) An experimental calibration of the compliance
of the apparatus is proposed, in which it is necessary
to measure the contact area and the compression of the
system under condition of zero adhesion. It is shown that
maximum accuracy of the calibration would be expected
by carrying out the experiment in the range of contact size
1.0 < a/hy < 10.0, for the practical range of the moduli
and thickness ratios.

In circumstances where the JKR relationship is used as
an approximate fit to the results of an adhesion experiment,

minimum errors would arise if the contact size a/h, were
chosen to lie in the range where (a/E})(dE} /da) is small.

Appendix. Determination of energy release rate G

The energy release rate at the edge of the indenter is
determined from the finite element solution by making use
of a virtual crack extension method, as developed by Parks
(1974) and extended by Li et al (1985). A brief summary
of the implementation is given below.

Consider the state in the surface elastic layer and
introduce local co-ordinates (x;, x,) centred at the edge of
the contact, as shown in figure 10(a). The strain energy
release rate G at the contact edge is given by the J-integral:

a .
G=1J= (Wn1 - a,-,-n,-ﬁ) ds (Al
To ax)
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Figure 9. The correction term (a/E})(dE;/da) in equation (23) for the variation in effective modulus E; with contact size,
derived from the gradient of the curves in figure 8, (hy/hy = 10).

where T’y is any path which begins on the surface of the
solid at a vanishing distance outside the contact edge, and
ends on the surface of the solid at a vanishing distance
inside the contact edge. Here n; is the outward normal to
To, oij is the stress, u; is the displacement, ds is the arc
length along I'g and W is the strain energy density defined
by

€kl
Weew = [ o dey (A2)
Note that the value of J is path independent such that
the integral defined in (A1) vanishes for any closed path
excluding a singularity. Accurate numerical estimates of J
are best obtained by converting the contour integral (A1)
into a domain integral at a distance of several finite elements
from the contact edge. Parks’ method, in essence, is this

1718

domain integral technique. The transformation is carried
out in two steps.

(i) Path independence of the J-integral allows (Al) to
be re-written as
du;
Uj
1

J

/F1+Fz+l‘3(

J, (=
Wn1 — Ojjhi —

I

ax

au,-

Wﬂ] —O’ijn,'a—x:) ds
) ds+/ (—0’1,11,*——) ds
I3 1
(A3)

ax
where the various contours are defined in figure 10(b). In
(A3), use has been made of the fact that n; vanishes on I';
and I';, and that I'; is traction free.
(ii) With reference to figure 10(c) it is convenient to re-
write the integral over I', in (A3) in the form of a closed
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Figure 10. Contour integrals used in the evaluation of the
J-integral.

contour:
Buj
Wnl — Oijnhi — ds
r ax
a .
= —f q (Wﬂl —O','jn,"ﬁ) ds
F4+Ts+Te—T2 axl

ou;
=+ q (Wn, - U,-jn,-ﬂ> ds
| P axl

ou:
+ 1/ q (Wm . o,-jniﬁ) ds
r's ax

a .
+/ q (Wnl - a;jn,-—u—’) ds (Ad)
Ts ax)

where the scalar function g(x) is given the value ¢ = 1
on I';, g = 0 on I's and is taken to vary linearly with s
over I’y and I's. The fourth term on the right-hand side of
(A4) vanishes since the integrand vanishes over I's. The
second term on the right-hand side of (A4) also vanishes
since n; = ojjnj = 0 on I';. On collecting the remaining
terms in (A3) and (A4), the J-integral may be expressed as

Adhesion mechanics of the surface force apparatus

a .
J=—f q(Wn,—aijn;i)ds
T4+Ts+T6—T2 ox;

ou;
+/ —-q (a,~n~—]—) ds. (AS)
Ts+T3 / ,axl

Parks (1974) and Li et al (1985) have shown that the closed
contour integral specified in (AS) is precisely the energy
release rate associated with a virtual decrease of the contact
size by an amount da = —1. The contact size is decreased
by translating all nodes within I'; of the finite element mesh
by unity in the x;-direction. All nodes outside the ring I's
are held fixed, so that only the elements between the two
contours are distorted. Following Parks (1974), the closed
contour integral in (A5) can be re-written as

ou;
—f q (Wnl - a;,-n,-—i) dS
T4+Ts+Ts—T ox;

= %{un}’%:-{un}. (A6)
The elements of the vector {u,} are the nodal displacements
of the finite element calculation and [S] is the associated
finite element stiffness matrix. The right-hand side of (A6)
is calculated as follows. First, the indentation problem is
solved in order to determine the values of {u,}. Then, the
nodes within and on the contour I', are displaced a small
distance da = —1 parallel to the x;-direction; nodes on
and outside of I's are simultaneously held fixed, and the
stiffness matrix is recomputed. Note that [S] changes only
for those elements placed between contours I'; and I's. The
right-hand side of (A6) is then computed. The procedure
is done automatically within the ABAQUS finite element
package. Finally, the correction term given by the second
term of the right-hand side of (A5) is used in the estimation
of G=1J.
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