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Abstract. A finite strain finite element method is used to examine the stress state near the tip of a deep notch
in an elastic-plastic porous solid. The notch is loaded in mode I plane strain tension and small scale yielding is
assumed. Two rate independent strain hardening material models are used: a version of the Gurson model (1977)
and the more recent FKM model developed by Fleck, Kuhn and McMeeking (1992). Under increasing K7, void
growth is initially stable and independent of mesh dimension. Localization of plastic flow sets in at a finite value
K, and the deformation field is mesh-size dependent thereafter. The initiation of crack growth at the notch root is
assumed to occur when a critical level of porosity is attained. The results show that the shape of the plastic zone
for both the Gurson and the FKM material is highly dependent on the initial porosity. In the case of low initial
porosity, the plastic zone shape is similar to that of a fully dense material; at higher initial porosities the plastic
zone is concentrated ahead of the notch tip. The effect of the initial void volume fraction on the porosity field and
the critical stress intensity factor is studied, and the mesh-size dependence of the results is discussed. The analysis
is useful for prediction of the notched strength of porous metals.

1. Introduction

Sintered metals are used increasingly in the production of engineering components due to the
advantages which they offer in terms of the ease of processing and mechanical properties.
Complex shaped components such as gears and cams can be made to near net final shape
from metallic powders. A characteristic feature of sintered materials is their porosity, which
ranges from zero up to 0.5. The porosity may be used to advantage in gears and bearings by
permitting the impregnation of the material with a liquid or solid lubricant. When the part
contains a deep notch, failure may be by void growth from the notch root. Tensile stresses at
the notch root lead to void growth and coalescence: a crack is nucleated. The main aim of the
current paper is to develop a failure criterion for the nucleation of cracking from a notch root.
The finite element method is used to examine the notch tip stress and deformation state in a
porous solid.

The geometry of interest is shown in Figure 1. We consider a long notch of initial tip radius
80/2 in a ductile porous solid. Mode I small scale yielding conditions are assumed, whereby
the remote elastic field is characterised by the mode I stress intensity factor K;. We shall show
that under increasing K void growth is initially stable and independent of mesh dimension.
Localization of plastic flow sets in at a finite value K;, and the deformation field is mesh-size
dependent thereafter. The criterion for the initiation of ductile crack growth is assumed to be
the attainment of a critical void volume fraction, f.. The results lead to the prediction of a
critical stress intensity factor K. as a function of initial porosity.

* On leave from Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106,
U.S.A.
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Figure 1. The small scale yielding problem for a long blunted notch in a porous solid. The area around the notch
tip is shown enlarged to show the finite notch root radius %50.

In the present work two porous material models are studied: the Gurson model (1977) and
the more recent FKM model developed by Fleck, Kuhn and McMeeking (1992). The Gurson
material model, which is appropriate for low porosities, considers the porous material as a
plastic matrix containing separated, spherical voids. In the limit of zero porosity, the Gurson
model reduces to J>-flow theory. The FKM model assumes that a porous material consists
of spherical particles bonded perfectly at isolated contacts. The FKM model is applicable
at higher porosities from about 0.10 up to the limit of dense random packing for equi-sized
spheres; at dense random packing the void volume fraction f is 0.36.

The Gurson model has been used widely in the study of ductile fracture. For example,
Drugan and Miao (1992, 1993, 1995) performed analytical analyses of the stress distribution
around both a stationary and a growing crack tip for the case of a Gurson solid at fixed porosity.
Other work on the effects of porosity on crack fields in ductile metals has consisted mainly
of numerical studies, see for example Jagota et al. (1987); Aoki et al. (1984) and (1987);
Needleman and Tvergaard (1987); and Aravas and McMeeking (1985), all using the Gurson
model. Pan and co-workers (1990, 1991, 1994) have studied the crack tip stress fields and
the plastic zones in pressure-sensitive materials using both asymptotic methods and the finite
element method. They use a linear combination of the effective stress and the mean stress as
the yield criterion; no porosity parameter is involved explicitly in their work in contrast to the
treatment given below.

It is well-known that void growth leads to material softening and to the phenomenon of
strain localization. The localization is associated with local unloading of material elements
and to a switch of the governing field equations from elliptic to hyperbolic in nature. Post-
localization, the response is sensitive to mesh size with a coarser mesh giving the stiffer
response. In the current study, void growth is considered to well past localization and the
role of mesh size is explored. We consider the geometry of a deep notch of initial opening
8y and root radius §y/2 in order to set a length scale to the problem and to introduce a finite
stress concentration at the notch root. Localization is expected to initiate at a finite value of K,
independent of mesh size provided the mesh is sufficiently fine in relation to §y. Subsequently,
deformation is localized within a band of thickness equal to the mesh size, and the post-
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localization response is mesh-size dependent. In the limit of a vanishing root radius, the notch
becomes a crack and the strain state at the crack tip is unbounded. Then, the smaller the mesh
the lower is the critical value of Ky corresponding to the onset of localization.

2. Constitutive relations

The analysis is based on a convected co-ordinate Lagrangian formulation of the field equa-
tions, in which g;; and G;; are the metric tensors in the reference configuration and the
current configuration, respectively, with determinants g and G. The Lagrangian strain tensor is
nij = %(G,-j —8ij) = %(ui,j +uji+ u{‘iuk,j) where u' are the displacement components on the
reference base vectors, and () ; denotes the covariant derivatives in the reference frame. The
contravariant components of the Kirchhoff stress tensor, 74 on the current base vectors are
related to the contravariant components of the Cauchy or true stress tensor by ¥/ = /G/go".
The initial state is taken as the reference configuration.

The strain increment is assumed to be the sum of the elastic and plastic parts, 7;; = 775 +f7£ ,
where () denotes differentiation with respect to a loading parameter. The elastic part of the
strain is taken to be small and therefore the elastic constitutive response is approximately
given by the hypoelastic relation

ol — ﬂijklﬁkE[ — RUM (5, — by, (1)

. v ...
where the Jaumann (co-rotational) rate of the Cauchy stress tensor, o | is related to the
convected rate by

S — GH 4 %{Giko.jl + Glkgil 4 Gilg it 4 Gllai® )iy, . o
The finite strain generalization of Budiansky (see Hutchinson, (1973)) is used

j{l]kl — {% (leGjl+GllG]k) +
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where E and v are Young’s modulus and Poisson’s ratio, respectively. Equilibrium is enforced
via the principle of virtual work

fz"fan,-j dv :/Tiéu,- ds, 4)
VvV N

with body forces neglected. Here V and S are the volume and the surface of the body in
the reference state. The components of the surface tractions per unit area in the reference
configuration on the reference base vectors are given by

T = (7Y + rkjufk)nj, &)

with n; as the components of the surface normal in the reference state.
For time independent plasticity the resulting incremental constitutive relations are of the
form

i = LUy, (6)
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The uniaxial true stress-logarithmic strain curve for the matrix material in tension is repre-
sented by the piecewise power law

=

o/E o < o,
“Tlo(o ' o >0 "
E \o, ”

where o is the uniaxial yield stress and n is the strain hardening exponent.

3. Porous material models

The yield surface for a porous material depends upon the stress state o'/, the yield strength of
the matrix o, and the void volume fraction f; the yield function ® can be written in the form

&, oy, f)=0. (8)

3.1. GURSON MODEL

The Gurson model (1977) assumes that porosity exists in the form of isolated, spherical
voids. The model has a sound micromechanical basis, and gives accurate estimates of the
macroscopic softening due to a small volume fraction of voids including the dilute limit. Much
use has been made of the Gurson model to investigate void growth in the context of ductile
fracture of notched bars (see for example, Becker et al. (1988) and Needleman and Tvergaard
(1984)) and at crack tips (Needleman and Tvergaard (1987) and (1994)). The applicability
of the Gurson solid to sintered materials has been examined by Hancock (1982) and Becker
(1987) amongst others and is reviewed by Tvergaard (1990). Although measurements of the
yield surface shape at low porosities appear to be missing from the literature, the Gurson solid
appears to give a satisfactory prediction of uniaxial compression data (e.g. Hancock (1982))
and of notched tensile data (Becker et al. (1988)). The model loses accuracy at porosities in
excess of about f = 0.1. In this study, an elastic-strain hardening plastic version of the model
is used. The yield surface is given by

o2 0 ot

¢ = — +2611fC05h{——k‘}*(1+(Q1f)2)20, )
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with the macroscopic effective Mises stress given by o, = (3s;;5"/2)!/? in which sV =

o'/ — G} /3 is the stress deviator. The constants g; and g, are the Tvergaard adjustment
factors (1981, 1982a) set to 1.5 and 1.0, respectively, in the present study. In the limit of zero
porosity the Gurson model reduces to J,-flow theory.

3.2. FKM MODEL

The more recent FKM porous material model suggested by Fleck, Kuhn and McMeeking
(1992) assumes that the material consists of spherical particles joined by discrete necks. The
FKM solid is based on an upper bound calculation for the yield surface of a particulate solid;
it assumes that the imposed macroscopic strain rate defines the normal indentation rate and
the associated plastic dissipation at isolated contacts between particles. The FKM model is
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Figure 2. Comparison of the yield surfaces for the Gurson model and the FKM model.

applicable at higher porosities from approximately 0.10 up to the limit of dense random
packing, taken to be that for equi-sized spheres, f = f = 0.36 (This corresponds to a relative
density D = 0.64). The yield surface is given by

o (39 2V, (S ? - 10
I8 py 3 3 py -
with
py =297(1 -f)zf}faM. an

Figure 2 shows a comparison of the FKM yield surface and that of the Gurson model. The
FKM vyield surface contains a vertex on the hydrostatic stress axis in (o, %J,f‘) space. For
numerical computation purposes, the vertex is rounded off by a quadratic approximation to
the yield surface near the vertex as done by Fleck, Otoyo and Needleman (1992).

The Gurson model is appropriate at low levels of porosity f < 0.1 when voids are rounded
and discrete. In contrast, the FKM model attempts to capture the macroscopic response at high
porosity f > 0.1 for the case of isolated deformation at the necks between particles. It is clear
from Figure 2 that the shape and size of the yield surfaces are markedly different for the two
models: the FKM model has a higher ratio of deviatoric strength to hydrostatic strength, for
all porosity levels less than about f = 0.3. Both models display approximately the same rate
of softening of hydrostatic strength with increasing f; the FKM model, however, predicts that
the deviatoric strength decreases more rapidly with increasing f than the Gurson solid. At
porosity levels of about f = 0.1, it might be hoped that the yield surfaces for the two models
would converge. Unfortunately, this is not the case, due to the different micromechanical basis
for the two models. In reality, for f in the vicinity of 0.1, the microstructure of sintered
solids consists of interconnected voids, and yielding occurs throughout the particles rather
than in a local manner at individual necks: both models are only approximately realistic in
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this difficult transition regime. Fleck et al. (1992) suggest that in this transition regime it is
more appropriate to take a weighted average of the FKM yield surface and the Gurson yield
surface than to assume that either model is realistic. I

Few experimental data are available to reveal the true shape of the yield surface as a
function of porosity. In recent powder compaction experiments by Akisanya et al. (1997),
the yield surface of isostatically compacted copper powder was measured for porosities in
the range f = 0.1 — 0.2. Good agreement was observed between the prediction of yield
surface shape by a cohesionless version of the FKM model (Fleck (1995)) and the observed
yield surface. No comparison was made between the predicted size of the yield surface by
the FKM model and the measured yield surface, as the yield strength of the copper powder
was not known. As discussed in the original paper by Fleck et al. (1992), the size of the
FKM yield surface is not realistic at porosity levels of less than f = 0.2, as it erroneously
predicts that the macroscopic von Mises flow strength o, exceeds the yield strength o, of the
base powder material. This is traced back to the fact that the model assumes that the normal
traction at inter-particle contacts is given by the Prandtl indentation solution of three times.
Recent calculations of the contact pressure between powder particles by Ogbonna and Fleck
(1995) and by Mesarovic and Fleck (1998) reveal that the degree of plastic constraint at the
necks between particles is significantly less than the Prandtl value for porosities in the range
f = 0.1—-0.2. We conclude that the shape of the FKM yield surface has experimental support
for f greater than about 0.1, but the size of the yield surface is somewhat overestimated.

3.3. BASIC POROUS MATERIAL EQUATIONS

A detailed discussion of the procedure for the Gurson material is given by Tvergaard (1990);
here, only a brief summary is reported. Since the elastic deformations are small compared
to the plastic deformations the elastic contribution to the change in f with deformation is
neglected. The matrix material is plastically incompressible, and so the rate of growth of the
porosity is given by

f=0- Gl (12)

The incremental relation between the effective plastic strain in the matrix, €., and the equiv-
alent tensile yield strength of the matrix, oy, is given by

1 1
. P .
ey =\——=)oum (13)
" ( E. E )
where E; is the slope of the uniaxial true stress-logarithmic strain curve for the matrix mate-

rial. Here, oy and €}, are viewed as spatial averages of the actual microscopic fields in the
matrix material.

The plastic part of the strain increment is assumed to be

0P

doii’

nh=A (14)

where A is the plastic multiplier and 3®/dc"/ gives the direction of the plastic strain in-
crement. Normality for the matrix material at the microscopic level implies macroscopic
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normality for the porous aggregate (Berg, 1970; Bishop and Hill, 1951). The macroscopic
plastic work rate is equated with the plastic work rate in the matrix material, giving

o0l = F(f)ouéy. (15)

where F(f) is the volume fraction of deforming material. In the Gurson model F(f) = 1— f
since all of the matrix material in the original model is assumed to yield. An expression for
F(f) in the FKM model is taken from Fleck, Otoyo and Needleman (1992) as

45 f 2
F:—(l—f)2<f}f> . (16)

V3

Using (13) and (15), the rate of the tensile equivalent flow stress in the matrix material follows
as

_ EE, Oijﬁi};‘
E—E, F(f)O'M'
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Initiation of plastic yielding occurs when ® = 0 and & > 0. The consistency condition for
continued plastic flow, ® = 0, is used to obtain an expression for the plastic multiplier A, and
thereby the plastic strain increment,

p_ 130 80 v,

- , 18
i = H 960 9ok (1%
with
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Upon substituting (18) into (1), the instantaneous moduli from (6) are determined as
Lijkl — oCijkl . [LMiijl, (20)
where
DCljkl — _{thjkl _%(O,Iijl_i_O,JkGll_'_o.llij +O.Jlle)_|_O,1]le} (21)
V 8
0 elastic unloading
p=1 [c 90 00 o (22)
—|H+ —R""—— plastic loading
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and M" is defined by
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M = C(lekl (23)
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4. Numerical method

The finite element mesh used for the calculations is shown in Figure 3a. The mesh consists”
of 1718 nodes and 524 isoparametric eight-noded elements. An enlargement of the near tip

region is shown in Figure 3b. Due to symmetry about the crack line, only half of the body is

analysed, as shown. The calculations for the porous material are carried out with 3x3 Gauss

integration points in each element. The ratio between the initial notch opening, ¢, and the

outer mesh radius, Ry, is 1/2500.

The reference state is represented by a Cartesian coordinate system x'-x? and a state of
plane-strain deformation is assumed. The origin of the Cartesian frame is set at the center of
the semi-circular notch tip in Figure 3b. Numerical solutions are obtained by an incrementally
linear method. An approximate equilibrium state is fulfilled for the current values of the
stresses, o/, the strains, 7;;, etc. By expanding the principle of virtual work (4) about this
known state, the equations regarding the increments, 6"/, 7;;, etc. are obtained. With body
forces neglected, the expansion of the principle of virtual work takes the form

f {T”ST]U + Tijl:t{(l-Suk,j} dV
Vv

:/Tiéui ds — U T 8n;; dV—/Ti(su,- ds]. (24)
N 1% N

The term in square brackets of (24) vanishes according to (4), if the current state satis-
fies equilibrium. It is included here to prevent the solution from drifting away from the true
equilibrium state.

The value of the parameter w in (20) is chosen at each material point according to the
state of the material in the previous increment. This type of procedure gives good accuracy
provided the increments are sufficiently small (see for example Tvergaard (1982b)).

Small-scale yielding conditions are assumed and the remote field is the mode I K-field.
The displacement boundary conditions imposed at the outer semi-circular boundary are of the
form

U K R 1 — 2v + sin” 16) cos 10
= —(1+v)/== ( 221) ot (25)
Uz E 27 | (2 = 2v + cos? 16) sin 36

where u; and u, are the Cartesian components of the displacement vector and (r, 6) are polar
co-ordinates as defined in Figure 3. Kj is the mode I stress intensity factor. The remaining
boundary conditions are

T' = 0 on the crack surface

1 _ _ 2 _ 1 (26)
T'=0,up, =0forx =0,x" >

1
250

5. Results

In a typical finite element calculation, the notched porous solid is loaded with an increasing
K, and the evolution of stress state and porosity is determined. Initially, at small values of Kj,
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Figure 3. Finite element mesh in initial configuration (medium mesh, lg/8g = 0.087): (a) full mesh, and (b)
enlarged near tip region of mesh.

plastic deformation and attendant void growth occur in a stable manner in the vicinity of the
notch root. In this regime the response is independent of mesh size for a sufficiently refined
mesh in relation to the notch opening 8,. At a particular value of Kj, termed K;, localization
of deformation with elastic unloading initiates at some point in the mesh. Thereafter, material
loads within a narrow band near the notch root and adjacent material unloads. The width of
the band of continuing localized deformation is set by the mesh size, and the post-localization
reponse is thereby mesh-size dependent. The initiation of ductile crack growth, which may
eventually lead to failure, is defined to occur when the porosity attains a critical value, finax =
f. at any material point. This condition defines the critical stress intensity factor, K, at which
fracture begins by void coalescence. We shall show that the critical void volume fraction f. is
attained only in the post-localisation regime and that the particular choice of value for f. has
a negligible effect on the calculated value of K. Void growth is rapid in the post-localisation
regime, and the precise details depend as much upon the degree of mesh refinement as upon
the assumed softening law. The reader is referred to Tvergaard and Needleman (1984) for a
suggested modification to the Gurson model such that the strength of the solid reduces to zero
when a critical porosity is attained.

Both the Gurson model and the FKM model predict softening responses which lead to
mesh size dependence in the post-localization regime. Needleman and Tvergaard (1994) have
discussed these mesh effects for the Gurson model. Here, calculations are carried out for three
different meshes, ly/8g = 0.131, /8¢ = 0.087 and [y /59 = 0.052, where [, is the initial height
of the first element directly ahead of the notch tip. The median mesh, /y/8p = 0.087, is the one
shown in Figure 3 and is used in all calculations unless otherwise stated. The calculations are
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carried out for a matrix material with o,/ E = 0.0025, v = 0.3 and strain hardening exponent,.
n = 10.

The maximum porosity at any point within the mesh is plotted as a function of stress’
intensity factor, Kj, for the three different meshes. Results are given in Figure 4a for the
Gurson solid (for an initial porosity f; = 0.05) and in Figure 5a for the FKM solid (for an
initial porosity fy = 0.14). For both material models the R-curves are insensitive to mesh
size prior to localization, but become strongly sensitive to mesh size in the post-localization
regime. After localization, void growth occurs more easily in the fine mesh and the estimated
fracture toughness value, K, corresponding to fi.x = fo = 0.20, decreases with decreasing
mesh size, as shown in Figures 4a and 5a. In the limit of vanishing mesh size we would expect
K. = K;. Thus, the value K; serves as a useful measure of the notch toughness.

For low initial porosities such as fy = 0.05, the Gurson solid is the appropriate constitutive
model and stable plastic void growth occurs for a large range of K7y; localization sets in when
the void volume fraction has approximately doubled from its initial value. At higher initial
porosities, such as fy = 0.14, the FKM solid is appropriate; localization occurs at a low level
of K and the void volume fraction has increased by about 10 percent above its initial value.

Typical plots of the plastic zone shape are shown in Figure 4b for the Gurson solid, and in
Figure 5b for the FKM solid. X is the horizontal distance from the center of the semi-circular
notch tip to a point of interest, such as the plastic zone boundary. It is again evident that, prior
to localization, there is a negligible effect of mesh size on the response. This is illustrated
for the Gurson solid in Figure 4b: the plastic zone boundary is shown for K./oy/8 = 11,
labelled state C for the coarse mesh and state D for the fine mesh. The plastic zone shape is
reminiscent of that for a plane strain mode I crack in a von Mises solid. A similar insensitivity
of results to mesh size prior to localization is observed for the FKM solid, see Figure 5b.
Therein, the plastic zone boundary is shown for K, /O'y\/% = 1.4, labelled state C for the
coarse mesh and state D for the fine mesh. For the FKM solid the plastic zone is concentrated
ahead of the notch tip; this is suggestive of a plane stress Dugdale model of notch root plastic-
ity. The difference in shapes of plastic zone for the two material models is consistent with the
difference in shape of the yield surfaces. The FKM solid has a much lower ratio of hydrostatic
yield strength to deviatoric yield strength compared with the Gurson solid, and high stress
triaxiality is unable to develop ahead of the notch. Consequently, the plastic zone shape is
similar to that generated in a fully dense solid under plane stress conditions. In contrast, the
Gurson solid can support larger hydrostatic stresses and the plastic zone shape is similar to
that at the tip of a mode I crack under plane strain conditions.

The plastic zone shapes at the onset of fracture (e.g. fmax = fo = 0.20) are included in
Figures 4b and 5b. The critical state is labelled A for the coarse mesh (/y/8yp = 0.131), and
labelled B for the fine mesh (Iy/8y = 0.052), as cross-referenced on the R-curves of Figures 4a
and 5a. For both constitutive descriptions, a larger value of K, and a larger plastic zone size are
exhibited by the coarser mesh. The localized strip of plastically deforming material directly
ahead of the notch tip has the height of 2 integration points and extends a couple of notch
openings ahead of the notch.

The notch opening displacements are §/§y = 1.244 and /8y = 1.178 at points B and D
in Figure 4a, respectively, for the Gurson material with low initial porosity. When the FKM
model with high initial porosity is used the notch opening displacement is §/3p = 1.017 in
state B and §/§p = 1.008 in state D in Figure Sa.

The tensile stress component 6, is plotted as a function of distance directly ahead of the
notch for states B and D in Figure 4c (Gurson solid), and in Figure 5S¢ (FKM solid). Prior to
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Figure 4. Results for the Gurson model with the initial porosity fo = 0.05. (a) The stress intensity factor, K, as a
function of the maximum porosity for three different meshes, lg/8y = 0.131, Iy /89 = 0.0.087 and Iy /89 = 0.052.
The onset of localization is marked for each mesh. (b) The plastic zone boundary at fmax = 0.2 for the coarse
mesh (state A) and for the fine mesh (state B) post-localization, and at fmax = 0.08 for the coarse mesh (state C)
and for the fine mesh (state D) pre-localization. (c) The tensile stress directly ahead of the notch 657 normalised
by the yield stress oy, as a function of the initial horizontal distance from the center of the semi-circular notch tip
X, for states B and D. (d) The plastic zone and porosity contours for state B.
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Figure 5. Results for the FKM model with the initial porosity fo = 0.14. (a) The stress intensity factor, Ky, as a
function of the maximum porosity for three different meshes, lg/8g = 0.131, /89 = 0.0.087 and [y/ég = 0.052.
The onset of localization is marked for each mesh. (b) The plastic zone boundary at fmax = 0.2 for the coarse
mesh (state A) and for the fine mesh (state B) post-localization, and at fimax = 0.142 for the coarse mesh (state C)
and for the fine mesh (state D) pre-localization. (¢) The tensile stress directly ahead of the notch 677 normalised
by the yield stress oy, as a function of the initial horizontal distance from the center of the semi-circular notch tip
X, for states B and D. (d) The plastic zone and porosity contours for state B.
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Figure 6. Comparison of the plastic zones from the FKM model and the Gurson model with the same initial
porosity, fo = 0.09, and the same critical porosity, fo = 0.20. (a) full size of both plastic zones, and (b) an
enlargement of the near tip region.

localization (state B) the stress distribution 67, is similar to that for a blunted crack in a strain
hardening fully dense solid (Rice and Johnson (1970), and McMeeking (1977)). The stress
attains a peak value at a distance ahead of the notch of approximately the notch root radius. At
the later stages of loading, when fu,,x = 0.20 at state B, the stress peak has moved away from
the notch tip. Between the notch tip and the location of the stress peak plastic deformation has
localized and the stress level has decreased due to void growth. The unstable nature of the void
growth within the band is clear from the highly localized contours of porosity as shown for the
fine mesh at fi,.x = f. = 0.20 in Figures 4d and 5d. The highly local void growth at the notch
root is consistent with the predictions of Aravas and McMeeking (1985), who examined the
rupture of the ligament between a blunt crack and a neighbouring void. In reality an additional
material length scale is involved, in the form of the finite spacing of void-nucleating particles,
such as carbide particles in steels. In order to model this feature an additional length scale is
required within the constitutive description, for example by the addition of a cohesive zone
ahead of the notch tip, as implemented by Tvergaard and Hutchinson (1992), or by use of a
non-local plasticity law, see for example Fleck and Hutchinson (1997).

A comparison of the plastic zones for the two material models is given in Figure 6. In
both cases, the initial porosity is fy = 0.09 and the critical porosity, f. = 0.20 has been
attained. The medium mesh (l/89 = 0.087) is used. The plastic zone of the FKM model is
concentrated near the notch tip and the critical stress intensity factor is much lower than in
the Gurson material case. When the critical porosity is attained, the Gurson model predicts a
critical stress intensity factor of K./o,+/89 = 9.78 which is approximately twice that of the
FKM model (K./oy+/8y = 4.20). The size of the plastic zone of the Gurson model is also
much larger than that of the FKM model. These differences may be explained in broad terms
as follows. For a void volume fraction in the range 0.1 to 0.2, the FKM solid has a much
lower ratio of hydrostatic strength to deviatoric strength than that of the Gurson solid. Also,
the FKM solid softens more rapidly with increasing porosity. Consequently, the FKM solid
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Figure 7. The normalized stress intensity factor for the initiation of localization K; and the critical stress intensity
factor K. (f- = 0.20) as functions of initial porosity, fj.

is unable to support significant hydrostatic stresses and the usual plane strain plastic zone is
unable to develop.

The stress intensity factor for the initiation of localization K; and the critical stress intensity
factor K. for the initiation of ductile crack growth are both highly dependent on the initial
porosity as shown in Figure 7. On the other hand, the assumed value of critical porosity has
lesser effect on the magnitude of K.: numerical experimentation revealed that an increase in f,
from 0.2 to 0.3 resulted in an increase of K. by a few percent. We emphasize that predictions
of K; are not strongly dependent of the mesh but predictions of K, are sensitive to the ratio of
mesh size to initial notch opening. The results shown in Figure 7 pertain to /y/3p = 0.087. As
mentioned above, the Gurson model is the more realistic model at low porosities and the FKM
model is more appropriate at higher porosities. The lowest initial porosity used with the FKM
model is 0.09. At initial porosities higher than 0.10 the values of K; and K. for the Gurson
model lie approximately a factor of two above those for the FKM model.

6. Discussion

It is clear that the deformation response becomes mesh size dependent at the onset of local-
ization. It is suggested that the stress intensity factor K; at localization is a useful measure of
notch toughness, since it is slightly conservative, K; < K., and is not strongly mesh depen-
dent.

So far, the mesh size has been considered to be a modelling artifact with no physical
significance. An alternative strategy is to assume that the mesh size is an approximate measure
of the particle size of a sintered solid, and that material response depends upon this internal
material length scale. Results for different mesh sizes are then ascribed a physical significance:
results for a large mesh are representative of the behaviour of a sintered solid containing large
particles, and results for a fine mesh apply to a sintered solid containing fine particles. The
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fracture toughness of a sintered solid containing a sharp crack would then scale with the
particle size.

With the chosen critical porosity criterion for initiation of ductile crack growth, the Gurson —

and FKM constitutive laws predict quite different plastic zones and critical stress intensity
factors. The plastic zones predicted by the Gurson model are much larger than those predicted
by the FKM model partly due to the larger value of the stress intensity factor when the critical
porosity is attained. The FKM solid is unable to support large hydrostatic stresses and thus,
the usual plane strain plastic zone is unable to develop. However, the material models are
based on different assumptions and are valid for different ranges of porosity. The FKM model
is thought to be valid for porosity f in the range 0.1 to 0.35, and the Gurson model is realistic
for f < 0.1.

Despite the obvious difference between the material models, it has been shown that the
shape and size of the plastic zone in general is highly dependent on the initial porosity of the
material. In the case of low initial porosity, the shape of the plastic zone is quite similar to
that of a crack tip field in a fully dense material except directly adjacent to the notch tip where
the increase in porosity causes stress relaxation. At higher initial porosities, the plastic zone
is small and concentrated ahead of the notch tip.

The maximum porosity in the present study is always located directly ahead of the notch
tip. For the case of the Gurson solid with low initial porosity, only a small increase in porosity
occurs as K is increased from zero to K;. Specifically, the growth in porosity exceeds 1 percent
only in a small region around the notch tip within a much large plastic zone. In contrast, for
the FKM solid with high initial porosity, the region over which porosity grows by more than
1 percent as K is increased from zero to K; occupies about half of the plastic zone.

The focus of the current work has been to use the onset of localisation as the failure crite-
rion for a deep notch. Once localisation has set in, subsequent void growth is rapid. Although
the post-localisation response is sensitive to the choice of constitutive model, to the mesh
details and to the numerical method employed, the precise post-localisation response is of
minor importance. There is little elevation in stress intensity beyond the point of localisation
as evidenced by the fact that the critical stress intensity factor is close in value to the stress
intensity factor at the onset of localisation. The magnitude of K, is primarily dependent upon
the initial porosity and is less dependent upon the choice of critical porosity.
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