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A polarization switching model for polycrystalline ferroelectric ceramics has been developed. It is
assumed that a single ferroelectric crystallite in a ceramic, which is subjected to an electric field
and/or a stress, undergoes a complete polarization change and a corresponding strain change if the
resulting reduction in potential energy exceeds a critical value per unit volume of switching
material. The crystallite’s switch causes a change in the interaction of its field and stress with the
surrounding crystallites, which is modeled by the Eshelby inclusion method to provide a mean field
estimate of the effect. Thus the model accounts for the effects of the mean electric and stress fields
arising from the constraints presented by surrounding crystallites as well as the externally applied
mechanical and electrical loads. The switching response of the ceramic polycrystal is obtained by
averaging over the behavior of a large number of randomly oriented crystallites. The model, along
with the linear dielectric, elastic, and piezoelectric behavior of the material, is implemented in a
computer simulation. A fit to experimental electric displacement versus electric field, strain versus
electric field, and strain versus stress curves of a ceramic lead lanthanum zirconate titanate PLZT at
room temperature is used to obtain material parameters. The model then successfully predicts the
electric displacement and strain hysteresis loops for the PLZT under varying electric fields with a
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constant applied stress. © 1998 American Institute of Physics. [S0021-8979(98)06015-0]

l. INTRODUCTION

Switching is the source of the butterfly shaped strain
versus electric field curves and the corresponding electric
displacement versus electric field hysteresis loops for ferro-
electric ceramics.! Such hysteresis loops for an 8/65/35 lead
lanthanum zirconate titanate (PLZT) polycrystalline ceramic
at room temperature are shown in Figs. 1 and 2. Given that
switching is the only source of nonlinear strain and electric
displacement response for a polycrystalline ferroelectric ce-
ramic, it should be possible to model experimentally ob-
tained hysteresis loops by a combination of a switching cri-
terion for individual crystallites and the linear response of
the polycrystal.>~* Such a model would be useful for predict-
ing the nonlinear response of the material under multiaxial
states of mechanical and electrical loading and for guiding
the development of phenomenological constitutive laws by
augmenting the limited data from experiments.'~>>~° An ad-
ditional motivation is to explore how well a mean field
theory, with the in-built assumption that crystallites are al-
ways completely polarized in their current orientation or in
their new orientation after transformation, simulates the ob-
served behavior during switching of a polycrystalline ferro-
electric ceramic.
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An attempt to develop such a model is presented in this
article. It is assumed that each crystallite in the ceramic is
tetragonal with six possible orientations for polarization.! (It
should be noted, however, that other crystallographies such
as thombohedral could be implemented easily in the model.)
The net polarization and strain of the polycrystal is the vol-
ume average over all crystallites of the local values. The
energy barrier to 90° switching for an individual crystallite is
taken to be much less than the barrier to 180° switching. A
switch is then assumed to take place in an individual crys-
tallite when the magnitude of the reduction in potential en-
ergy of the system due to the switch equals the size of the
energy barrier to the switch. Thus this version of the model
neglects thermal activation and the associated rate effects
and is for cases where the external fields are varied very
slowly compared to the relaxation rates for domain wall pro-
cesses. However, we assume that switching in crystallites is
opposed by finite energy barriers capable of being easily
overcome by applied fields.

From ample experimental evidence, we conclude
that switching occurs by domain wall motion. However, as
noted above, we explore a model in which complete switch-
ing takes place in a crystallite when it meets the critical
condition for repolarization. We do not follow the domain
wall as it traverses the crystallite but only compare the be-
ginning and end points of the process of complete switching
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FIG. 1. Simulated and measured 8/65/35 PLZT electric displacement vs
electric field hysteresis loops with no applied stress.

of the crystallite. Thus, the domain wall is considered to
move very quickly through the crystallite. This seems rea-
sonable given the high mobility of domain walls!>1%11 and
the fact that the applied loads are considered to vary slowly.
The assumption of complete switching for a crystallite re-
quires us to use the criterion discussed above that the energy
change upon transformation equals a critical value. Other
criteria such as the meeting of a critical electric field in the
crystallite are unsuitable. They lead to the immediate rever-
sal of many switches due to the large depolarization fields
(electrical and mechanical) generated in the crystallites after
the initial transformation. Our experience with the model has
shown us that only if the total energy reduction of the system
is equal to a critical value will all the switches be stable and
not immediately reverse themselves. Thus our criterion for
switching seems to be the only suitable one given that a
crystallite is assumed to switch itself entirely upon transfor-
mation.

The calculation of the reduction of the potential energy
due to a switch is carried out by modeling the crystallite as a
spherical inclusion in an infinite homogeneous matrix repre-
senting the polycrystalline ceramic. Such mean field theories
have been widely used to model mechanical behavior at the
macroscopic level,'*~1® including the plasticity of polycrys-
tals. Recently, Arlt!® has used a mean field theory as the
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FIG. 2. Simulated and measured 8/65/35 PLZT longitudinal strain vs elec-
tric field butterfly loops with no applied stress.
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basis of a model for the switching of ferroelectric ceramic
polycrystals, but using only dielectric polarization and elec-
trostatics without any mechanical features in the theory. In
contrast, we wish to account for the effects of polarization
strain in addition to the electrical effects and to develop a
model for polycrystalline ferroelectric switching analogous
to those already in place for polycrystalline plasticity.!*~1>18
In our case, the inclusion is assumed to be a single crystallite
switching all at once when the transformation takes place, as
noted above. One contribution to the reduction in potential
energy of the system upon switching is due to the interaction
of the switch with the applied fields. A second contribution is
the change in stored energy of matrix constraint due to the
complete reorientation of the electrical and mechanical po-
larization of the inclusion. The constraint of the matrix on
the inclusion is computed as if it were enforced invariantly
by the linear properties of the material, but with piezoelec-
tricity omitted. However, material property values for the
matrix are chosen for the energy change calculation which
reduce the effect of the constraint compared to that which
would be enforced by the measured linear dielectric permit-
tivity and elastic modulus of the ceramic polycrystal. This
softness of the matrix yields a better fit with experimental
measurements of hysteresis and butterfly loops, but can also
be rationalized as a consequence of the on-going switching
of the matrix material. Such an approach is a well established
procedure in the modeling of plasticity in polycrystals, where
the full elastic constraint used in the method of
Kroener—Budiansky—Wu'>!'* is well known to be too stiff
when inelastic straining is widespread throughout the
crystallites.ls’18 The softness may also be due to the presence
of pores, cracks, electrodes, and free surfaces near the do-
mains which initiate switching in a heterogeneous material.

It is well known that the vast majority of crystallites in a
ferroelectric polycrystal in the initial state after cooling down
through the Curie temperature become stabilized due to the
screening of polarization charges by free charge carriers and
because of domain, twinning, and strain coordination with
neighbors.! The mean effect of the stabilization is not zero
and cannot be attributed to random spatial fluctuation of
electric and mechanical fields. The effects of this stabiliza-
tion contribute to the energy increase during the switching
process and may be roughly described by the introduction of
an additional energy barrier hindering it. The magnitude of
the energy barrier to switching used in our model is an ad-
justable parameter and is assumed to take into account this
stabilization feature.

In fitting our model to the data, we have found it neces-
sary to weight the potential energy change due to the trans-
formation strain more heavily than the potential energy
change due to the electrical polarization. This makes switch-
ing driven by applied stress easier to achieve and the fit to
the data is then better. It is possible that this step is made
necessary by the approximations introduced when the inter-
actions among simultaneously and progressively switching
crystallites are represented by a mean field theory having a
fixed level of isotropic constraint on crystallites which com-
pletely transform during repolarization. In conjunction with
this, the omission of piezoelectricity in the constraint calcu-
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lation may have contributed to the requirement for weighting
one of the terms over the other. In light of these points, the
resulting weighting of the contribution of the transformation
strain to the potential energy change by 140% is significant
but not excessive. In any case, the numerical results and the
degree of empirical adjustment which has been introduced
into the model are indicators of the relative validity and suc-
cess of this particular method of simulating polycrystalline
ferroelectric switching.

The simulations are carried out with a large number of
crystallites having initially random tetragonality. The starting
point for the polycrystal is therefore one of zero average
polarization and this state is chosen as the datum for electric
displacement and strain. The applied electrical and stress
fields are then gradually increased and later reversed. The
behavior is followed incrementally by permitting in each
step the switching of the crystallites most favored in the
sense of the driving force exceeding the barrier. The load is
kept constant until all the energetically favorable crystallites
switch. However, only a very small number are allowed to
transform initially in each update. The step sizes are there-
fore chosen to be small and the number of increments in a
simulation is large. The macroscopic polarization and strain
are computed by simple number averaging over all crystal-
lites which are assumed to have equal volume. This average
includes the linearly produced contributions (i.e., dielectric-
ity, elasticity, and piezoelectricity) as well as the nonlinear
amounts caused by switching.

The parameters of the model are chosen from empirical
constants or by fitting the results of the model to the experi-
ment. Predictions of behavior not used to obtain the fit are
then made and the result is fairly successful. A PLZT 8/65/
35, which is mostly rhombohedral, has been used in this
exercise despite the simulation being carried out with the
assumption that the material is tetragonal. Because of the
large number of crystallites used in the calculations, the
model is still physically justifiable for this case, with the 90°
tetragonal switches providing a reasonable representation of
the ~70° and ~110° switches in the rhombohedral phase.

Il. PROBLEM DESCRIPTION

The ceramic volume V is considered to be composed of
a large number of equiaxed crystallites of initially random
tetragonal orientation. The crystallites are bonded together
perfectly at their boundaries with no extrinsic charge present
anywhere within the ceramic. The exact problem, therefore,
has an electric displacement D satisfying in V

oD;19x;=0 (1)
along with the continuity condition
n{|D{1=0 (2

across the crystallite boundaries where x is position, n is the
outward unit normal to the boundary, and the symbol [] |]
denotes a jump in the quantity contained within it. All com-
ponents of vectors and tensors are referred to a common
fixed Cartesian coordinate system. Mechanical equilibrium
requires that in V
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60',-j/¢9x,-=0, (3)
and .
nifloi|1=0 . @

across crystallite boundaries, where o is the mechanical
stress.

Each crystallite obeys a constitutive law for the electric
displacement given by

Di=€ijEj+diklo'kl+P;’ (5)

where € is the tensor of dielectric permittivities, d is the
tensor of piezoelectric coefficients and P” is the spontaneous
polarization of the crystallite with magnitude P,. The elec-
tric field vector, E is given by

E,-=—¢9CI)/¢9x,-, (6)

where @ is the potential. The ¢ axis of the tetragonal unit cell
is parallel to P’. The strain, e;;, in a crystallite is defined in
terms of the displacement, u, in the usual manner

e”=(3u,/¢9x]+8u1/ﬁx,)/2 (7)
and satisfies the constitutive law
€;;=di;ExtSijimomtel;, (8)

where s is the tensor of elastic compliances and e” is the
spontaneous strain of the tetragonal unit cell measured from
a cubic datum. Thus, €” has principal values

c—Qqy

)

em=
m a

and
a—ay

a=en=—, (10)

where a and c are the lattice parameters of the tetragonal
unit cell and a is the lattice parameter of the cubic unit cell
above the Curie temperature. Later, however, we will assume
that e;= eg= — eq/2 with eyp=e, so that the tetragonal unit
cell has the same volume as the cubic cell. The principal
directions of the spontaneous strain are the ¢ axis (ey;) and
the directions orthogonal to the ¢ axis.

The dielectric permittivity, piezoelectric coefficient, and
elasticity tensors in general are anisotropic with the polar
axis determining the symmetries. The exact macroscopic
properties of the ceramic are weighted or unweighted aver-
ages of the crystallite properties with the governing equa-
tions (1)—(4) taken into account. Standard methods are avail-
able to obtain approximate values for the macroscopic linear
proper’tic:s.lé’17 However, linear properties are not the focus
of this article. Instead the nonlinear behavior is of interest.
Therefore, the problem is simplified by assuming € and s to
be isotropic and the same for every crystallite given by

Eij= 65,~j, (11)
where € is the dielectric permittivity and

1+v

14
Siji ="y OO~ ¥ 6ij%u, - (12)
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where v is Poisson’s ratio and Y is Young’s modulus. The
calculation of the macroscopic linear properties for dielectric
permittivity and elasticity is then simplified since they will
also be equal to (11) and (12), respectively. With these as-
sumptions, the dielectric permittivity and the elasticity of the
polycrystalline ceramic will be isotropic even when it has a
net polarization. The impact of this approximation in the
modeling of uniaxial behavior will be diminished by choos-
ing € v, and Y to match the experimental data measured
from uniaxial poling and stressing experiments on the poly-
crystalline ceramic.

The piezoelectric coefficient tensor for each crystallite,
when referred to the coordinate system in which the positive
x3 axis is parallel to the positive polarization direction, has
the positive valued component d333. The other components
of d which are nonzero are assumed to be

—3d333. (13)

This is a somewhat simplified model for the piezoelectricity
of a single crystallite. However, the neglected terms will
contribute less significantly to the macroscopic average pi-
ezoelectric behavior of the transversely isotropic polycrystal,
so their omission can be justified.

In the model, the nonlinear properties of the polycrystal-
line ceramic are determined by imposing a potential on the
boundary of the ceramic which is consistent with a uniform
electric field and tractions which are in equilibrium with a
uniform stress. The resulting fields must then satisfy Egs.
(1)—(8) as well as the boundary conditions. The macroscopic
remanent polarization is the volume average of the sponta-
neous polarization of the crystallites and the macroscopic
remanent strain 1s the volume average of the spontaneous
strain of each crystallite. Initially, the spontaneous polariza-
tions are random so the macroscopic remanent polarization is
zero as is the macroscopic remanent strain. As the electric
field or the stress or both are increased, switching takes place
and therefore, on average, the remanent polarization and the
remanent strain can become nonzero.

A crystallite is assumed to switch when the reduction of
potential energy of the system due to that switch is equal to
a critical value, which can be considered to be equal to the
energy barrier which must be overcome to achieve the
switch. The potential energy of the system is2021

dy1=dsp=

1
v= jv 5 Loij(eij—ei) +E(D;i=P)ldV

—fT,-uidS—j(quS, (14)
N S

where S is the exterior surface of V, T is the mechanical
traction on S, and g is the extrinsic charge surface density
present on S. The form of (14) recognizes that the tractions
T and the potential ® are specified everywhere on S. It has
also been assumed that the electrostatic energy in regions
external to V can be neglected. This can be justified usually
for ferroelectrics because the dielectric permittivity is high
compared to that of air. As a result, the electric displacement
exterior to a ferroelectric is often very small compared to that
within. In such a situation, the boundary condition on § is
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q=—n,~D,~, (15)

where n is the exterior normal to S and D is the electric
displacement in V at the surface S. This condition arises
because D is neglected outside V and so n;[|D;{]=~"n;D;.
However, this boundary condition must be used with care
because it is invalid when there is significant electrostatic
coupling through the external surface with another element
or when there is self-coupling as through re-entrant corners,
notches, or cracks.?

We assume that one crystallite switches at a time so that
a change in the potential energy can be ascribed to the repo-
larization of an individual crystallite with the traction and
potential on S held fixed. The change AU occurs because P’
in the switching crystallite will be reoriented and possibly so
will e”. The requirement that Egs. (1)—(8) must still be sat-
isfied after the switch will lead to changes in all the terms in
U except T and @ on S which are fixed. The criterion for the
switch is therefore

—AU=V AV, (16)

where V. is the volume of the switching crystallite and AW,
is the energy barrier against the switch per unit volume. In
this work, we assume that the energy barrier to a 90° switch
AW is different from the barrier to a 180° switch A8

lil. INCLUSION MODEL

To estimate the change of potential energy for a switch,
we approximate the problem stated above as a spherical in-
clusion which is switching embedded in a nontransforming
homogeneous matrix with a fixed remanent polarization P™™
and strain €™. The inclusion undergoes a change in sponta-
neous polarization AP™ and strain Ae™ while the applied
stress o” and electric field EA are held fixed at infinity. This
problem is related to that for an elastic inclusion solved by
Eshelby?""?® and our treatment will take advantage of his
insights. There is equivalence also with the problem of a
cavity in a dielectric medium.?

The piezoelectric inclusion has been the subject of sev-
eral treatments.’*~?" The results are quite complicated and
are not readily used for repetitive computation of the poten-
tial energy of several thousand inclusions. When the problem
is approximated as a piezoelectric inclusion in an isotropic
matrix, the results are more tractable but still complicated.?
The simplest version of the problem which retains the physi-
cal features in a reasonable fashion is one in which the pi-
ezoelectric terms are neglected completely. In this treatment,
the potential energy due to the inclusion is that of an isotro-
pic elastic inclusion with a transformation strain in a homo-
geneous isotropic elastic matrix with a different residual
strain plus the energy of an isotropic electrostatic inclusion
with a spontaneous polarization in an isotropic matrix with a
remanent polarization different from the spontaneous polar-
ization of the inclusion. Following Eshelby?"? and Deeg,?*
McMeeking and Hwang?® have shown this to be

U=U0+U1, (17)

where Uy is U from Eq. (14) evaluated with €” and P” uni-
form everywhere in V and
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U=V —oj(e]—el") —ENP]—P™)
N (7— 5V)Y( erm( i
3001 =7 (i€ es

1 .
+— (P]'= P[™)(P}-

rm
> P, (18)

where V; is the volume of the spherical inclusion. Here, U,
is the potential energy of the solid when the inclusion has a
spontaneous polarization and strain equal to the remanent
polarization and strain of the matrix. The contribution U,
arises from the differences between the spontaneous polar-
ization and strain in the inclusion and the remanent polariza-
tion and strain in the matrix. The first two terms on the right
hand side of Eq. (18) are the interaction of the transformation
strain, ¢"'—e"™ with the applied stress and the transformation
polarization P"~P™™ with the applied field. The third term is
the elastic energy due to the transformation strain in an iso-
tropic elastic body without any applied load, as given by
Eshelby.?!"?3 The fourth term is the electrostatic energy due
to the transformation polarization in an isotropic dielectric
free of field at infinity and can be deduced from the solution
for a spherical cavity in an isotropic dielectric.’ Therefore,
Eq. (18) accounts for the misfit of inclusion strain and polar-
ization but does not account for the difference in electrome-
chanical properties (i.e., modulus, permittivity, and piezo-
electricity) between the inclusion and matrix. A fuller
although incomplete account of the additional terms is given
by McMeeking and Hwang.?

When the inclusion switches, Uy is unaltered but U,
changes to U;+AU. The change occurs because the inclu-
sion spontaneous polarization becomes a new value, P
+AP". At the same time, the inclusion spontaneous strain
changes to e”'+ Ae”, with the increment Ae” zero if a 180°
switch is involved. Consequently,

AU=V, ~ojAe]/—E{AP]

(7 SV)Y en rm+_1__A ri Aeri
A=) i T Beu) 2

+37 | PE-PIM % AP;") AP;‘]. (19)
Consider the case of 90° switching and let P}'= Py,
whereas Py'=P5=0 (i.e., the inclusion polanzatlon is ini-
tially a.hgned w1th the positive x; direction). Let the inclu-
sion polarization switch to the positive x3 direction so that
APT'=—P,, APY=P,, and AP} =0. As a consequence

(P7'+3AP])AP'=0. (20)

e and e, :

— 3eo with other terms in e;;=0. Therefore, Ae“
—3eo and Aef=3e, with Ae’ =0, otherwise. It follows
that

For the same switch, assume initially that efl=
=e; 33

(e"+ 1Ae”)Ae”—O 21)

Hwang et al.

Although illustrated for a particular case, Egs. (20) and (21)
are in fact general. Therefore, the potential energy change
due to a 90° switch of the inclusion is -

(7-5v)Yej; i . =
AU=—VI[ 0’3+—m-)
(E"+ !

3e

When a 180° switch takes place, APi=—2P" and Ae” is
zero; AU is again given by Eq. (22).

P"”) AP '}. (22)

IV. NUMERICAL SIMULATION

The model for ferroelectric behavior is implemented in a
numerical simulation with several thousand crystallites. A
random number generator is used to create the principal axes
of the initial tetragonal unit cell of each crystallite with a
spontaneous strain e in the ¢ axis direction and — e(/2 in the
other two principal directions. A spontaneous polarization of
magnitude P, is assigned randomly to one of the two direc-
tions parallel to the ¢ axis of the unit cell. The components of
the spontaneous polarization and strain of each crystallite are
calculated in a fixed Cartesian coordinate system common to
the aggregate of crystallites. These components will be re-
ferred to throughout the discussion below. With m being a
unit vector in the polarization direction of the crystallite, the
components of the remanent polarization for that crystallite
are given by

P!=Pym; (23)
and the remanent strain is
e,']=%e0(3m,-mj—5,~j). (24)

The macroscopic polarization of the aggregate is com-
puted as the volume average of the polarization in the crys-
tallites. Since each crystallite is assumed to have the same
volume V;, the volume average can be computed as a simple
arithmetic average of the polarization vector components
over all crystallites. Similarly, the macroscopic strain of the
aggregate is the volume average of the crystallite strains,
deduced by a simple arithmetic average over all crystallites.
Thus, the initial remanent polarization and strain of the ag-
gregate is zero, or nearly zero because of the finite number of
crystallites involved in the random simulation. Similarly, the
linear contributions to the electric displacement D; and strain
e;; are zero initially because the applied field and stress are
zero initially.

The applied field, or the stress, or both (referred to
jointly as the load) are gradually introduced. After a small
increment of load is applied, each crystallite is checked to
see if it has met the switching criterion. The expression for
AU given by Eq. (22) is substituted into the switching crite-
rion [Eq. (16)] and is modified to the form

2 - rm ri A 1 rm ri r
a a;‘.‘j+§Ye,.j Aefj+| Ej+ 32 PI"|AP[=2EP, (25)

Here, the energy AW, is rewritten as 2EqP,, where E, is an
effective coercive field magnitude. The value of E; is chosen
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to provide a best fit of the simulation results to experimental
data. (Note: E3° for a 90° switch is different from E}*° for a
180° switch.) a is a weighting parameter differentiating the
mechanical and the electrical driven switching. A value of a
greater than unity is chosen in order to encourage stress in-
duced switching. This requirement has been observed previ-
ously by Hwang et al.? The term Y is an effective modulus
which will be also chosen to provide a best fit of the numeri-
cal simulation to experimental data for hysteresis loops as
discussed below. Poisson’s ratio is approximated as 1/2 in
Eq. (22), giving rise to the numerical factor of 2/5 in Egq.
(25). Similarly, € is an effective dielectric permittivity cho-
sen to provide the best fit to experimental hysteresis data.
The unbarred terms Y and € are reserved for the linear elastic
modulus and linear dielectric permittivity of crystallites. The
values of ¥ and € used in the switching criterion are permit-
ted to differ from Y and e. The latter quantities are chosen to
agree with measured values of the linear elastic modulus and
linear dielectric permittivity of poled polycrystalline ferro-
electric ceramics.

Care must be exerted in implementing the criterion ex-
pressed in Eq. (25), due to the possibility of nonunique
switching. For each crystallite the tetragonal symmetry dic-
tates five possible switches. For a given load increment, the
switch which is taken to occur is that associated with the
greatest value of the left hand side of Eq. (25).

After all possible switches have been identified and
made, the macroscopic remanent polarization and strain for
the aggregate of crystallites is recomputed by averaging over
the crystallites. These values are also assigned as new values
of the matrix remanent polarization and strain (i.e., P™ and
e’™) for use in subsequent calculations with Eq. (25) [Note:
on the first step, Eq. (25) is used with P""=e™=0]. With
P™™ and e’™ updated, further switching is allowed to occur
without increase of the load. This process is repeated until no
more crystallites will switch. The load is then incremented
and Eq. (25) used to select further switches. The increments
of load are chosen so that only a few crystallites switch at
any given stage. However, many crystallites can follow the
few crystallites already switched at the same load. This is the
same autocatalytic effect observed in the experiments. Once
a few crystallites trigger switching, then other crystallites
follow suit. Thus, many crystallites can switch at the same
load.

At each stage, the linear contribution to the electric dis-
placement and the strain is computed from the linear terms in
Egs. (5) and (8), with Egs. (11) and (12) used for the elastic
modulus and dielectric permittivity tensor and the remanent
quantities given by Egs. (23) and (24). With the piezoelectric
coefficient tensor having the form of (13), it can be stated as

d;jy= 3dzm(3mm,— 8;1), (26)

where d;; is the axial piezoelectric coefficient for the
crystallite.! The applied electric field E4 is used for E in Egs.
(5) and (8) and the applied stress o” is used for o. The
macroscopic electric displacement for the aggregate of crys-
tallites is then computed by averaging the electric displace-
ment over all crystallites and the macroscopic strain for the
aggregate is obtained by averaging the crystallite strains. The
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assumed homogeneity of linear properties over all crystal-
lites obviates the need to use local crystallite values for o
and E in Egs. (5) and (8).

V. RESULTS

The simulation is fitted to experimental data for poly-
crystalline 8/65/35 PLZT with 5 um grain size. Hysteresis
loops were obtained for a 10 mm cube of the material driven
by loads cycled in triangle shaped waves at 0.02 Hz. The
experiments and results were described in a previous paper
by Hwang et al.?

It is found that a best fit can be obtained with Eg’
=0.13 MV/m, Ei¥=1.0 MV/m (E}* can be any large value
discouraging any 180° switch) €=0.80 uF/m, Y=7.5 GPa,
and a=1.4. These values differ substantially from the nomi-
nal magnitudes of coercive field, dielectric permittivity, and
Young’s modulus for PLZT. This discrepancy will be dis-
cussed later. With the given values for these constants, a
simulation with 5000 crystallites gives reproducible results.
For example, the initial remanent polarization of the aggre-
gate is typically less than 0.1% of the saturated remanent
polarization of the polycrystal; also, the numerical results for
a simulation for a given random set of 5000 crystallites are
within 5% of the values for other simulations based on a
different random set of 5000. These characteristics are im-
proved if a larger number of crystallites is used, but 5000 is
considered to be an effective number in the compromise be-
tween reproducibility and computer effort.

Other values used for parameters are Py=0.30 C/m?,
e(=0.0028, €=0.05625 wF/m, Y =34 GPa, and d3;=2.376
X 10™° m/V. The last two values have been chosen to pro-
vide good agreement of the model in the linear response
regime with the overall shape of the hysteresis loops.

A. Electric displacement versus electric field at zero
stress

Figure 1 shows the electric displacement versus electric
field hysteresis loops with experiments represented by the
thin line and calculations by the bold line. The simulation
shows very good agreement with the experiments, confirm-
ing the effectiveness of the choice of fitting parameters. At a
higher magnitude of the electric field, the simulated curves
do not match the measured ones well. This feature arises
because of a nonlinear response of the ferroelectric in the
experiments. We believe that this is due to a diminution of
the dielectric permittivity as the field magnitude increases. In
other words, it appears that the ‘‘linear’’ dielectric response
saturates at a high field in the experiments. This effect is not
included in the simulations.

A characteristic of the measured curves which is not
captured well in the simulations is the gradual change of the
remanent polarization at the beginning of and during switch-
ing. The simulations give a much more abrupt transition
from saturation of the remanent polarization to switching and
a steeper slope during switching. Improvements in this as-
pect of the simulation cannot be made without compromising
other aspects of the agreement between the simulated curves
and the measured ones.
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It should be noted that the experimental loops shown in
Fig. 1 and in all other figures are the repeatable curves ob-
tained after several transient cycles of load. The experiment
and the simulation both start at zero electric field and zero
electric displacement. For the first few cycles, the loops have
different shapes. Eventually the hysteresis curves settle down
to those displayed in the figures. The initial transient loops
have been omitted in all figures except the simulated ones in
Figs. 1 and 2. Initially, switching commences at
~0.2 MV/m. However, once the ceramic is poled, switching
occurs consistently at ~0.3 MV/m due to the influence of
matrix constraints. In all plots, the data used as the starting
point of the simulation are zero electric field, zero electric
displacement, zero strain, and zero mechanical stress.

B. Strain versus electric field at zero stress

The fitting of the strain-electric field butterfly loop of the
simulations to the experiments is the most critical aspect of
selecting the three constants Eg" s ?, and € in the model. The
result is shown in Fig. 2. This behavior occurs simulta-
neously with that depicted in Fig. 1. In obtaining the best fit,
it was important to ensure that the simulation reproduced the
long narrow tails of the butterfly loop associated with switch-
ing as well as the remanent strain at zero electric field. The
tails are the result of consecutive 90° switchings for given
crystallites. The first switch contributes to a reduction in the
axial strain. Such switches occur first so that the axial strain
for the aggregate goes to zero as shown in simulations and
even becomes negative as in experiments (recall that the da-
tum for strain is the original shape of the unpoled polycrys-
talline aggregate). The second 90° switches then start to oc-
cur as the electric field is changed further and the axial strain
recovers to the levels present in the fully poled material.

In a previous effort to simulate ferroelectric behavior,
the long tails on the butterfly loops could not be reproduced
and there was considerable positive remanent strain in the
aggregate even when the polarization had disappeared. This
feature in the previous simulation was due to the fact that
180° switching was preferred numerically even though 90°
switching was permitted. The difference in the previous
simulation was the low barrier to 180° switching and the
omission of the constraint terms in Eq. (25) (i.e., Y was set to
zero and € to %) so that only the work done by the applied
load (o” and E#) was considered to contribute to the reduc-
tion of potential energy of the system upon transformation of
a crystallite. When the barrier to 180° switching is raised and
the process occurs by 90° switches alone, the shape of the
tails of the butterfly loops is improved. However, the effect
of matrix constraint is needed also to produce realistic loops.
After a first 90° switch, many crystallites are locked into
their new states by matrix constraint and are unable to un-
dergo a second 90° switch until the applied load is changed.
The second 90° switch does not occur immediately because
of the dielectric energy penalty when a crystallite polariza-
tion opposes the average polarization. Thus, an increase in
field magnitude is required before the second 90° switch oc-
curs in a crystallite. This illustrates the point that the con-
straint terms in Eq. (25) encourage crystallites to match
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FIG. 3. Simulated and measured 8/65/35 PLZT stress vs strain curves for a
poled ceramic with no applied electric field.

themselves as much as possible to the average behavior, in-
troducing an autocatalytic feature to the behavior. Once one
crystallite executes a 90° switch, other crystallites will be
more susceptible to 90° switching and a coordinated process
of transformation then ensues.

The favoring of 90° switching in the simulations pre-
sented in this article is due to mismatch constraint between a
given crystallite and the matrix, with the matrix representing
average aggregate behavior. However, we have also found in
separate work?® that the difference in linear piezoelectric
properties between crystallite and matrix can cause a first 90°
switch to occur more readily than a second, which then takes
place only after the applied load is further increased. There-
fore, even though the piezoelectric property mismatch
energy28 has been omitted from Eq. (25), the constraint terms
in Eq. (25) can be viewed as substituting for this piezoelec-
tric effect in the model as well as representing the mismatch
of shape and remanent polarization between the crystallite
and the matrix.

C. Stress versus strain at zero electric field

The experiment and simulation for this are carried out on
a poled ceramic. A poled ceramic is one which has been
taken through several cycles of high electric field reversal
until a repetitive hysteresis behavior is achieved. That is, the
procedure is followed which produces the repetitive loops
shown in Figs. 1 and 2. The electric field is then removed, so
that the polycrystalline ceramic has a net remanent polariza-
tion (approximately 0.24 C/m? in magnitude) and a net rem-
anent strain (approximately 0.14%).

A compressive mechanical stress is then applied to the
ceramic parallel to the polarization and later removed. The
result is shown in Fig. 3. Although the simulation gives a
poor reproduction of the details of the shape of the measured
curve, the basic shape and magnitude of the simulated curve
are satisfactory. This feature is significant, because in the
previous effort’ to simulate these curves, the strength of the
material during stress driven depolarization was greatly over-
estimated. The magnitude of Eg" seems to be largely respon-
sible. The low value for E3, along with a stress driven term
enhanced by « as used in the simulation depicted in Fig. 3,
makes stress driven depolarization relatively easy to achieve,
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FIG. 4. Simulated and measured 8/65/35 PLZT stress vs electric displace-
ment curves for a poled ceramic with no applied electric field.

without degrading the quality of the simulation of electric
field driven polarization and repolarization. The prediction of
remanent strain after removal of the stress is remarkably
good.

The simulated stress—strain curve in Fig. 3 shows a more
abrupt transition to depolarization than the measured curve
which is quite gradual. This suggests that the effective initial
resistance to stress driven depolarization is even lower than
we infer from our simulation. Improvement of this error
could not be achieved without degrading the agreement
achieved for other experimental data.

D. Stress versus electric displacement at zero
electric field

During the application of compressive mechanical stress
to the poled ceramic, depolarization takes place. This leads
to the curves shown in Fig. 4, which occur simultaneously
with those shown in Fig. 3. It appears that the simulation
captures the stress—depolarization effect better in terms of
strain than in terms of electric displacement (i.e., compare
Figs. 3 and 4).

VI. PREDICTIONS

The simulation results presented in the previous section
are simply the consequence of the fitting procedure. The
agreement between the simulations and experimental data is
satisfying, but does not represent a prediction of additional
behavior. Further simulations are carried out in this section
to predict other experimental data. The ten empirical param-
eters (E2°, E—'},go, Y, E e eg, Py, Y, € and d33) are kept at
the same values as before to carry out these additional cal-
culations.

The poled ceramic (i.e., one having the repetitive hyster-
esis loops shown in Figs. 1 and 2) is used as the initial state
for further simulations. A compressive stress of a chosen
magnitude is applied parallel to the polarization direction
and held fixed. An electric field parallel to the applied stress
is then introduced and cycled between positive and negative
limits. The results are shown in Figs. 5(a), 5(b), 6(a) and
6(b). These are repeatable loops generated after a few cycles
of electric field. Also shown are experimental results by
Lynch® which were not used in the fitting procedure for se-
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FIG. 5. Simulated and measured 8/65/35 PLZT hysteresis loops produced
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lecting the values of E?,", Y , €, and a. Therefore, the calcu-
lated curves shown in Figs. 5 and 6 are predictions of the
experimental loops shown in those plots.

The general features of the hysteresis loop for a constant
stress of — 15 MPa in Fig. 5(a) are captured quite well in the
predicted curves. The process of switching is more gradual
than when there is no stress applied. This spreading out of
the switching occurs because the applied compression en-
courages the first of the two consecutive 90° transformations
which a crystallite experiences and discourages the second.
The remanent polarization is predicted relatively poorly in
the calculated curves. This inaccuracy is probably associated
with the deficiency of the model in handling stress depolar-
ization, some of which occurs prior to the cycling of the
electric field (i.e., the effect of the pre-stress). However, the
simulation at a constant stress of — 15 MPa underpredicts the
remanent polarization magnitude, whereas the stress versus
electric displacement simulation curve in Fig. 4 overpredicts
the electric displacement magnitude at — 15 MPa.

The butterfly loop in Fig. 5(b) at a constant stress of
— 15 MPa is predicted nicely. The spreading of the switching
process by separating the occurrence of the consecutive 90°
switches for a given crystallite is indicated clearly by the
fatness of the tails of the loop, a feature which is predicted
quite well. The remanent strain is reduced considerably com-
pared to the unstressed case because of stress induced depo-
larization [compare Fig. 5(b) with Fig. 2]. This aspect of the
strain behavior is also captured well in the prediction.
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The hysteresis loop at a constant stress of —60 MPa as
shown in Fig. 6(a) is predicted very well. Both the remanent
polarization under compression, much reduced from the un-
stressed value, and the phenomenon of switching are repre-
sented well in the calculated loop. At this stress level, the
compression induced depolarization is predicted accurately.
The butterfly loop at a stress of —60 MPa shown in Fig. 6(b)
indicates that very little 90° switching is going on. The strain
loop which occurs is due largely to reversal of the piezoelec-
tric effect which can produce a butterfly loop in the absence
of 90° switching.’> Some 90° switching occurs in the loop of
Fig. 6(b), and the prediction provides a thinner loop than the
experiments.

VIi. DISCUSSION

Our model for the behavior of polycrystalline ferroelec-
tric ceramics takes the switching behavior at the crystallite
level as the starting point. Crystallites are considered to be
entirely polarized in one direction and to switch completely
to polarization in another direction when the critical condi-
tion for doing so is met. This picture is not entirely satisfac-
tory since it leaves no room for individual domains within
the crystallite and glosses over the stage of the process in
which domain walls sweep across the crystallite during
switching. The accommodation of individual domains in
ferroelectrics!? and other materials® is important and has
been studied. Their presence in ferroelectrics reflects strain
and dielectric incompatibilities among neighboring
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crystallites'® and is associated with a significant amount of
remanent stored energy. However, from our point of view,
the role of domain wall boundary motion is more important.
A mean field constraint model for polycrystalline switching,
which includes the phenomenon of domain wall motion,
could be developed along the lines of that used for plasticity
during polycrystalline deformation.!*!>~18 Such an approach
would include the feature that individual grains would have
mixtures of domains with different polarizations and would
behave as if they were sets of cooperating crystallites as
envisioned by Arlt."®

A fuller treatment of the problem would involve the
identification of the relative position in the aggregate of each
crystallite and a reasonably accurate calculation of the local
electric field, mechanical stress, and average remanent polar-
ization and strain in each crystallite as they progressively
switch by domain wall motion. Such a calculation could be
carried out by, say, the finite element method. Computations
for aggregates containing thousands of crystallites would be
very lengthy. Individual constraints on each crystallite
would, however, be identified reasonably accurately in such
an approach and cooperative switching among neighboring
grains would happen naturally. However, until much more
thorough treatments of the problem are undertaken, mean
field models are of value. The mean field model presented in
this article neglects the details of domain wall motion and
nearest neighbor interactions among crystallites. Instead, it
treats switching in crystallites as an abrupt phenomenon con-
trolled by the applied mechanical and electrical loads con-
strained by interactions only with the mean field of all other
crystallites in the aggregate. However, mean field theories
neglect the spatial fluctuations of fields within heterogeneous
aggregates and this omission at least affects the details of the
results if not the substance.

The model developed in this article has ten disposable
parameters. However, three of those are required to match
the linear response of the experimental material (i.e.,
Young’s modulus, dielectric permittivity, and piezoelectric
coefficient) and would be required in any simulation. The
other seven parameters are Py, eg, E?,", E(l)so, Y , €, and a,
of which P, and e, are empirical values representing the
polarizability and tetragonality of a crystallite. Again, accu-
rate values of these parameters would have to be utilized in
any model. Also E(I)SO can be any large value discouraging
180° switches. Therefore, E"g", Y , € and « are the only
parameters which are used in a phenomenological fashion in
the fitting procedure. Notwithstanding this aspect of our ap-
proach, we can still assert that Eo (both E?)O and E(l,so), Y,
and € have a physical meaning. The parameter EO is an ef-
fective value for the coercive field. Indeed, when Y=0 and
€= (as in the simulation carried out by Hwang et al.?) the
value used for E’O was the experimentally measured level of
0.36 MV/m. In the current approach, with the constraint
terms included, Ej’ is now much less than the empirical
coercive field level from the experimental loops. The value
used for Eg" of 0.13 MV/m is approximately 1/3 of the em-
pirical coercive field value. Our interpretation of this is that
switching in an unpoled polycrystal can initiate very easily at
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low electric field (i.e., at ~0.2 MV/m). However, after sig-
nificant polarization has developed in the polycrystal, matrix
constraint is a significant barrier to switching when the elec-
tric field is reversed: the critical field for the second cycle of
the electric field is increased from ~0.2 to ~0.3 MV/m, as
in Fig. 1.

The physical interpretations of Y and € are as the effec-
tive modulus and permittivity of the aggregate associated
with the constraint. However, Y=7.5GPa is much lower
than the crystallite elastic constant of 34 GPa. One interpre-
tation of this aspect of the model (as discussed in Sec. I) is
that during switching many crystallites are in the process of
transforming, leading to a lowering of the tangent modulus
for the polycrystalline aggregate. Similarly, the process in
which many crystallites switch simultaneously increases the
tangent dielectric permittivity of the polycrystalline aggre-
gate, leading to a high value of € at 0.80 uF/m compared to
the measured value for the dielectric permittivity of 0.05 625
uF/m. A counterargument to this rationalization is that our
model proposes that only one crystallite switches at a time
and therefore the full level of linear constraint should be
retained by the remaining aggregate. Only if 80% of the
crystallites were to switch simultaneously would the con-
straint be reduced to the level used in the calculations for our
model. Another point of view is that the low level of con-
straint reflects the fact that switching in a heterogeneous ag-
gregate commences near free surfaces, at electrodes, and ad-
jacent to cracks and cavities. These features would reduce
the effective level of constraint on crystallites during initial
switching. The steepness of experimental hysteresis loops
after switching has commenced suggests that our model may
be deficient in assuming that only one crystallite switches at
a time and that after switching has initiated, low constraint is
continued by the simultaneous transformation of many
grains.

We offer no physical argument as for why a should be
greater than 1 in our simulations. We can only suggest that
the value of 1.4 is a consequence of other approximations
and assumptions in the model. It is notable that whereas the
constraint modulus at 7.5 GPa is about 20% of the true elas-
tic modulus of 34 GPa, the true dielectric permittivity is only
about 7% of the constraint permittivity which equals 0.8
uF/m. This indicates that there is an asymmetry in the ad-
justments in the model and the enhanced weighting of the
potential energy change due to the transformation strain, and
can be thought of as a consequence of such asymmetric ad-
justments and approximations. The omission of piezoelectric
terms in the Eshelby calculation of constraint energy for an
inclusion probably contributes to this feature as well.

A significant concern is that 8/65/35 PLZT at room tem-
perature is composed mostly of rhombohedral crystallites.
(This point came to our attention after the model had been
developed and the experiments were complete.) Our model,
implemented for tetragonal crystallites, is approximate when
applied to rhombohedral materials. (The model can be imple-
mented for rhombohedral crystallites, as it can be for any
ferroelectric crystallography. Such a development should be
undertaken in the future.) However, the difference between
tetragonal symmetry and rhombohedral crystallography is
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not great in terms of available switches, spontaneous polar-
izations, and strains. There is still one 180° switch, bup the
four 90° switches are replaced by three ~70° plus three
~110° transformations. Averaged over 5000 crystallites, the
four 90° switches per crystallite in the tetragonal implemen-
tation of the model are probably quite effective at represent-
ing the 70° and 110° switches in the rhombohedral crystal-
lite. A rationalization of our results can be based upon an
idea suggested by Arlt.”® This is that inclusions represent
collections of crystallites and therefore can have symmetries
other than that of the lattice forming the material.

The accuracy of our results simulating hysteresis, butter-
fly, and stress—strain loops is reasonable even though the
results are not precise. The lack of precision is an indication
of the deficiencies in the approach. On the other hand, the
relative closeness of the results to the experiments shows the
effectiveness of a mean field theory involving complete
switching of crystallites and having only ten disposable pa-
rameters. Certainly, the introduction of additional disposable
parameters or more sweeping ad hoc adjustments to the
equations would improve the accuracy of the results. For
example, Arlt!® has achieved a very accurate simulation of
the charge versus potential hysteresis loops of BaTiO; and
PLZT using a mean field theory similar to ours. However, he
makes an ad hoc adjustment to the form of the functional
expression for the depolarization field in the crystallite to
achieve this success. He does not model the strain versus
electrical potential butterfly loops, although this could be
done readily for BaTiO; since there is no remanent strain
change in the crystallites in that material. It is notable that
Arlt" omits the piezoelectric effect on the depolarization
field, just as we do.

Rather than change the functional form of terms entering
our mean field theory, we prefer to adjust only material con-
stants and then explore the effectiveness of our model, in-
cluding the prediction of curves not used to choose values
for the adjusted parameters. An advantage of our approach is
that we are able to provide a prescription for the response of
the polycrystal to electrical and mechanical applied fields
which are rather different from the simple uniaxial field and
stress loadings which are applied to produce hysteresis, but-
terfly, and stress—strain curves. For example, an electric field
could be applied to a previously polarized polycrystal in a
direction different from that of the original poling. Whereas,
our methodology and material parameters can be used in
such a case, we would not know how to extend the model of
Arlt to such loadings, nor does he suggest an approach.

Our model is useful for the insight it provides into the
constitutive behavior of ferroelectric ceramics and the ability
to explore stress and electric field states which are difficult to
achieve in the laboratory. While the model could be used as
a switching constitutive law for ferroelectric ceramics to
carry out stress and electric field analysis of devices and
defects, the computational burden of the method is probably
too great for such an approach to be effective. Instead, the
simulations can be used to guide the development of phe-
nomenological constitutive laws for switching which can be
then used more efficiently in device calculations.
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