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ABSTRACT

Two kinds of kink-band propagation in the compression of aligned-fiber composites are studied ana-
lytically : band broadening, discovered experimentally by Moran, Liu and Shih in 1995, in which a uniform
kink band grows in the direction of loading at constant stress under increasing deformation ; and transverse
kink propagation, in which a kink band traverses a specimen quasi-statically under constant overall
shortening. The analysis is based on a 1-D, geometrically nonlinear couple-stress theory of composite
kinking that takes elastic fiber bending resistance into account together with idealized nonlinear stress—
strain relations, but assumes non-breaking fibers. Simple results for the band-broadening and transverse
propagation stresses are deduced, and their significance is discussed. © 1998 Elsevier Science Ltd. All
rights reserved.
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INTRODUCTION

Elementary analyses of localized kinking under compression of aligned-fiber polymer-
matrix composites (Budiansky and Fleck, 1993), considered together with exper-
imental data, provide compelling evidence that compressive kinking strength is gov-
erned primarily by the yield strength in shear of the composite, and by fiber
misalignment. The indeterminacy of misalignments accounts for the notorious scatter
in kinking data. (For some general reviews of kinking studies, see Budiansky and
Fleck, 1994 ; Schultheisz and Waas, 1996 ; Waas and Schultheisz, 1996 ; Fleck, 1997.)
On the basis of various geometrical and physical models of the composite, detailed 2-
D finite-element calculations have recently been used to study the initiation, meta-
morphosis, and propagation of kink-bands in the presence of various initial dis-
tributions of fiber misalignment or notches (e.g., Fleck and Shu, 1995 ; Kyriakides et
al., 1995; Sutcliffe and Fleck, 1996 ; Kyriakides and Ruff, 1997). Such numerical
studies provide useful insights into the kinking process, and also serve to assess the
accuracy and relevance of elementary analyses. We note that fiber fracture has not
yet been incorporated into 2-D finite-element calculations; but fiber fracture can
generally be expected to occur only after the peak compressive stress has been attained
(Fleck et al., 1995).

* To whom correspondence should be addressed. E-mail : budiansky@harvard.edu.
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In this paper we use 1-D analyses to explore two kinds of steady-state kink propa-
gation : band broadening, in which an established kink band grows in the direction
of loading, and transverse propagation, in which a kink band travels across the width
of a composite specimen. Remarkably, band broadening without fiber fracture was
discovered experimentally only recently by Moran et al. (1995). On the other hand,
transverse propagation (which precedes band broadening) is ubiquitous, though often
dynamic, and not usually steady-state. Both types of propagation have been studied
theoretically on the basis of various physical models (e.g. Fleck and Budiansky, 1991 ;
Sutcliffe and Fleck, 1994 ; Moran er al., 1995; Liu and Shih, 1996). Our aim here is
to present some fairly rigorous studies of the mechanics of band broadening and
transverse propagation, including the effects of fiber bending resistance. With the
further use of idealized constitutive models, succinct results will be shown for both
types of kink propagation. Because compressive kinking strength is a random variable
sensitive to initial imperfections, we will discuss briefly the possibility (Moran et al.,
1995) of adopting one or another of the kink propagation stresses as a rational
working stress for design purposes.

REVIEW OF BASIC KINKING THEORY

To set the stage, we will summarize briefly some basic results of the elementary
theory of kinking (Budiansky and Fleck, 1993). We show in Fig. 1 the conventional
picture of a kink band oriented at an angle B, within which the fibers, originally
misaligned by ¢ with respect to the direction of loading, have rotated by the additional
angle ¢ under the compressive stress . For ¢ and ¢ small, equilibrium requires that

Fig. 1. Kink band, stresses in band, shear stress vs shear strain.
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the shear stress 7 and the tensile transverse stress o1 defined in Fig. 1 be related to the
applied compressive stress ¢ by

ta
_ T+_O'T -Lﬁ (1)
P+
and, for inextensional fibers, the shear strain y and the transverse strain ey are given
by
y=¢
(2)
er =¢gtanf

Dropping the contribution of o to ¢, and adopting the elastic-ideally-plastic relation
between t and y sketched in Fig. 1, we find that ¢ maximizes at ¢ = yy ; this gives the
lower-bound estimate

g = 3)

for the critical kinking stress. In the limiting case ¢ = 0, this gives the Rosen (1965)
result o, = G, where G is the elastic shear modutus of the composite ; for yy = 0, we
get the Argon (1972) estimate o, = 7v/¢.

Two points deserve emphasis. Even though eqn (3) does not contain 8, comparisons
made by Budiansky and Fleck (1993) indicate that over a reasonable range (say, up
to f =40°) it provides a fair approximation to critical stresses derived for strain-
hardening composites, with interactive effects of 7 and o taken into account, and v
equal to a nominal yield stress. Second, the compressed composite is very imper-
fection-sensitive. For example, with ¢ ~ 1.7° and yy & 0.01, eqn (3) gives 6./G ~ 1/4
and o./yy ~ 25; small changes in ¢ overwhelm the effects of o7 and f.

Another fact to be noted is that fiber fracture does not influence o,. The detailed
studies of Fleck et al. (1995), in which fiber bending resistance is considered, show
that fiber fracture occurs while the compressive load is dropping, at rotations much
larger than those corresponding to the attainment of maximum load. This holds even
if the fibers have no tensile strength ; for this case, a simple approximate formula for
the fiber rotation at fiber fracture, that follows from the analyses by Budiansky (1983)
and Fleck et al. (1995), gives

21,\17
¢fraclure ~ <AE1> (4)

where E is the Young’s modulus of the composite. For the plausible value
Ty/E = 0.0004, this gives ¢ = 0.09—much larger than the value ¢ = y, at which
g, is reached.

BAND BROADENING : OBSERVATIONS

In recent tests, Moran et al. (1995) and Moran and Shih (1998) observed the
longitudinal kink-band broadening shown schematically in Fig. 2. The composite was
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Fig. 3. Band broadening with multiple fiber fragments.

composed of 60% IM7 fibers in a PEEK matrix and the broadening evidently occurred
without fiber fracture and at constant applied stress. The growing band of straight
fibers, shown shaded, remained inclined at an angle ¢ approximately equal to twice
the band orientation 8 ~ 20°. This kind of fracture-free broadening was later seen by
Fleck et al. (1997) in an IM8/PEEK composite.

Band broadening of the type illustrated in Fig. 3, in which the straight portion of
the broadening band consists of broken segments of approximately equal length, has
recently been observed by Sivashanker ez al. (1996), Kyriakides and Ruff (1997), and
Vogler and Kyriakides (1997). In these cases the composite contained AS4 carbon
fibers, less strong and less stiff than IM7 and IM8. We will study only fracture-free
band broadening in this paper, but we will also determine the magnitudes of fiber
strength that permit its occurrence.
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In the experiments of Vogler and Kyriakides (1997) the fiber rotation during
broadening was found to exceed 2 somewhat. We will nevertheless use ¢, = 28 as
a reasonable approximation, based on the idea of “lock-up”, to be discussed.

LARGE-ROTATION, 1-D BENDING THEORY

We will develop here equations governing the response to compression of an
aligned-fiber composite, appropriate for the study of band-broadening, and later,
transverse kink propagation. The theory embodies couple stresses that account for
the bending resistance of the fibers, but extends the linear analyses by Budiansky
(1983) and Fleck er al. (1995) to large rotations. Small initial misalignments will
be neglected in comparison with the much larger rotations that occur during the
development of the broadening configuration.

We contemplate a geometry in which the kinking orientation is pre-set at f and
(see Fig. 4) the fiber rotation ¢ is invariant along f-lines x+ ytan B = constant.
Assuming inextensional fiber deformations, we can introduce the 1-D function ¢(s),
where s is distance along an arbitrary fiber, and define the longitudinal stress o,
transverse stress o, sliding shear stress 7, transverse shear stress 7, and couple stress
m, as shown in Fig. 4. These are all smeared-out true stresses, and are considered to
be functions of s; oy and 5 are parallel to the fibers, o1 and 7 act normal to the
fibers, and m is the couple stress on the deformed plane normal to the fibers.

Distances along f§ lines do not change, but the rotated portions of the composite
undergo transverse stretching. Let 4 denote the original thickness in the y-direction
of a portion of the composite, and let / be the stretched thickness normal to the fibers
(Fig. 4(d)). Then the transverse stretch ratio is

2s"

*

(a)

Lid1)

m+dm
—0(s) ,ﬁ@
(b) B (d)

Fig. 4. Kinked composite, rotation ¢(s), stresses, couple-stresses.
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cos(f—¢)

cos fB

9(B, ) = ()
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The function g(f, ¢) will appear frequently in the derivations that follow.

The assumptions of inextensionality and plane strain, i.e. zero strain in the thickness
direction normal to the x—y plane, imply that the composite suffers a volumetric
increase, also given by the ratio g(f, ¢). (It is generally believed that this dilatation is
accommodated by microcracking in the polymeric matrix.)

Force equilibrium in the direction normal to the fibres at the right end of the free
body in Fig. 4(b) implies that

o cos fsin ¢ = trcos(f— @) + o1 sin(f— @) (6a)
and equilibrium in the fiber direction gives
—ocosfcosd = 1gsin(f— @) + o, cos(f—¢). (6b)

These agree with the equilibrium equations given by Budiansky and Fleck (1993) for
a constant-rotation kink, in which there is no bending and 75 = 7;. But now moment
equilibrium of the element in Fig. 4(c, d) requires that

d
a;(’”g) =(ts—1r)g (7)
and this permits the elimination of 7 from (6a) to give
d
g cos ffsin ¢p +cos B& (mg) = 15cos(f— ) +orsin(B— o). ®)

We will soon drop o, but we keep it temporarily, in order to define strains via the
principle of virtual work. For convenience (this is not crucial) say that ¢ vanishes at
each end of the composite specimen in Fig. 4(a), and note that the shortening A is

A = [(1—cos ¢)ds 9)

where the integration is over the original specimen length. We assert that strain
variations &y and der, and bending-strain variations ok, conjugate in the work sense
to s, &1, and m, satisfy the principle of virtual work

a6[(1 —cos ¢) ds = [(156y + o1der +mdK)g(B, $) ds (10)

for strain variations compatible with d¢(s) and all combinations of stresses (zs, oT)
and couple stresses m that satisfy equilibrium. Eliminating o via eqn (8), and doing
one integration by parts, leads to

f{rﬂéy—&q&]+UT[5£T——6¢tan(ﬁ——d>)]+m [516—5%%:”“[}, ¢)ds=0. (11

This implies the energetically consistent strain-rate definitions
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P=¢
ér = dptan(f—¢) (12)
k = d¢/ds
which integrate to the strains
y=2¢
or = log ) = og (5. ) (3
k = d¢/ds

The first two of these agree with the results derived by Fleck and Budiansky (1991)
for ¢ independent of s and @ = 0; the expression for &; is also consistent with the
stretch ratio (5).

To complete the theoretical set-up we need constitutive relations. Transverse tension
tests point to early failure at transverse strains less than 1% (e.g. Fleck and Jelf, 1995;
Kyriakides ef al., 1995), and so at this point we will drop o from the equilibrium eqn
(8) as long as the transverse strain ¢; is positive. We then consider 5 to be a function
only of y = ¢. (Here we abandon the unrealistic assumption made by Fleck and
Budiansky (1991) that 15 becomes zero when transverse failure occurs.) We note
further that the transverse compressive strains that would want to occur for ¢ > 28
will be resisted elastically, at least initially, because matrix cracks will have closed, and
so henceforth we make the simplifying “lock-up” assumption (Fleck and Budiansky,
1991), and say that ¢ cannot exceed 28.

The bending will be presumed to be resisted elastically only by the fibers, with the
bending moment M in each circular fiber given by

M=E-"( o (14)

where E; is the fiber modulus and 4 its diameter. In terms of the fiber volume
concentration ¢ of the undeformed composite, the couple stress m in the deformed
material is
CfM
m = 5
9(B, #)(nd*/4)

and so, with the approximation E ~ ¢;E; for the initial composite modulus, we get the
bending constitutive relation

(15)

mo_Ed d¢
16g(B, ¢) ds
Using (16) in (8), with a1 dropped, gives

(16)

Ed* d?
T()_d_sgf +osing = ts($)g(8. b) a7
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for ¢ < 2. We will now neglect elastic strains in the relation z5(¢), and suppose that

75 jumps to a finite value for ¢ = 0*. We can then expect rotations ¢(s) confined to

a finite domain (0, 2s*), symmetrical about s = s*, and satisfying ¢(0) = ¢’(0) = 0;

this would lead to the picture in Fig. 4(a), with ¢ identically zero for s <0 and

s > 2s*, and continuity of displacement, rotation, and bending moment maintained.
A first integral of (17), valid in (0, s*) for ¢ < 28, gives

2 2 & 3 )
%;G¥)+d“*%®={ra@mm@d¢ (18)
S 0

and since d¢b/ds vanishes at s = s*, the connection between o and ¢, = P(s*) is

Prmax
J 1s(®)g(f. ) do

7= 1 —COS (rax ' (19)

Note that ¢ is generally a monotonically decreasing function of ¢,,,,, starting at
¢ = o0, and so the kinking stress, which occurs at small ¢ = O(yy), is not captured
by the theory. But as long as 8 > yy, this should not matter much in the analysis of
either band broadening or transverse kink propagation, both of which involve large
rotations, up to ¢ = 24.

BAND BROADENING : CALCULATIONS

Lock-up will first occur when ¢, reaches the value 2. The corresponding value
of the applied stress o given by eqn (19) is

28
j +s($) cos(f— @) d¢

0

(20)

To = sin fsin 26
This is the band broadening stress! With the loading held constant at ¢ = o, the
successive configurations shown in Fig. 2 can evolve, with bent shapes identical to
those at the initiation of lock-up emerging from a straight, locked interval of increasing
size. All requirements of equilibrium and continuity remain fully satisfied during this
band broadening. (It also has to be verified that in the locked region, where m = 0,
the transverse stress given by

ogr = [—opsin2f—15(2f8)] cot B (21)

according to eqn (8), is negative. This will always be true for 7(y) = 0 and t"(y) < 0.)

Because the basic equations of the theory were formulated to be consistent with
virtual work principles, the result for the band-broadening stress should emerge from
a simple energy calculation. Let w represent the length along the fibers in the locked
portion of the kink band (see Fig. 2). The shortening during an increment w during
broadening is A = dw(1 —cos 2f), and the additional work done by the sliding shear
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stresses is ow {3 t5(¢)g(B, ¢) d¢ per unit thickness of the composite. The virtual work
equality

2

0wl —cos2) = 6wf ey ()9(8. ) do @)

0

recovers eqn (20).

Finally, we will display a convenient explicit result for the band-broadening stress,
corresponding to the rigid-ideally-plastic idealization t5(y) = 1,. (Here we distinguish
7, from the value 7y (Fig. 1) that appears in the estimate (3) for the kinking stress.
The yield stress 1y corresponds to very small shear strains, whereas 1, should be
regarded as representative of the stresses associated with the large rotations that occur
during the evolution of band-broadening, and may be substantially higher than .
See, for example, the composite shear stress-strain curves measured by Kyriakides et
al. (1995).) With 745(¢) = 71, eqn (22) becomes

o,0w(l —cos 2f) = ow(27, tan ) (23)
and we get
27L
> = Sin2p (24)

for the band-broadening stress. The transverse stress (21) in the locked region reduces
to

g1 = —1Lcotf. (25)

FIBER FRACTURE CRITERION

In order to assess the validity of the assumption that fiber fracture does not occur,
we will calculate the maximum fiber tensile strain during band broadening. As before,
we take the datum for distance s along a fiber to be the left-hand end of its curved
region, as shown in Fig. 2. Fiber rotation begins at s = 0 and the fibers have rotated
through 28 to a locked-up state at s = 5. The fiber tensile strain due to bending and
longitudinal stress is given by

. dde¢(s) 4 g(B, d)o(s)
T2 ds E

(26)

for sin (0, 5). (The factor g in the second term reflects the effect of transverse stretching
on the local composite stiffness in the fiber direction.) We will use the rigid-ideally
plastic relation t5(¢) = 1, and introduce the nondimensional coordinate

4s |1

z @7

SdE

to rewrite ¢ as
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Ty 9oL
=2 [ =@+~ 28
e=2 [+ (28)
where ¢ and g, are now functions of S, and the primes denotes differentiation with
respect to S. Setting ¢ = g, and t4(4) = 7 in eqn (18) gives the connection

¢' = /2cos Blg(B, ¢)— 1] (29)

between ¢’ and ¢ in the curved portion of the kink during band broadening, and eqn
(6b) provides

% _ fk{ cos ¢ sin(ﬂ—qﬁ)} (30)

E|sinfcosf cos f

For each 7, /E, the maximum ¢ can now be found by maximizing (28) with respect to
¢ in (0,2f); the maximum occurs for ¢ > f, giving the curves shown in Fig. (5).
Actually, the peak strain occurs so close to the point where ¢ = f that these results
are indistinguishable from those given by explicit formula

2TL, B
a-Z\[E tdn2—Ecscﬁ (31)

obtained by substituting ¢ =  in eqns (28)—(30).

Fig. (5) indicates combinations of f# and 7, /E for which fracture-free broadening
would be possible for a given fiber breaking strain. For example, for a nominal
fracture strain & of 1%%, fracture-free band broadening with 8 = 30° could occur only
for 7, /E less than the unreasonably low value 0.0001 ; but for & = 2% and f = 15°,
we would only need 7, /E < 0.00045.
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Fig. 5. Maximum fiber tensile strain during band broadening with unbroken fibers.
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TRANSVERSE KINK PROPAGATION

We now contemplate a kink band propagating transversely at an angle § across a
uniformly compressed specimen (Fig. 6(a)) into an unkinked region. Since the height
L of the specimen is finite, the inclined kink would eventually have to run into the
upper edge of the specimen. But we presume that the propagation will be essentially
steady-state under constant end shortening A as long as the kink front remains far
from the boundaries. Alternatively, the analysis that follows is also applicable (per-
haps more so) to the horizontal steady-state propagation of a kink band inclined at
B in the thickness direction (Fig. 6(b)).

We must now partially relinquish the assumption of fiber inextensionality, because
the elastic shortening of the composite specimen due to fiber compression is likely to
dominate the shortening A, associated with the fiber rotations, which occur over
very small distances compared with the specimen length L. However, far back from
the leading edge of the kink, the total shortening A may be approximated by

A = UDL/E+Akink (32)

where oy, is the downstream boundary stress, E is the composite modulus, and Ay,
is based on the inextensional, 1-D bending theory that we have developed. We
anticipate that lock-up will occur downstream, and therefore, as indicated in Fig. 6,
the downstream stress ¢y, will be equal to the broadening stress ¢,. The downstream
shortening A, will be written as the sum

Agink = Apeng +w(1 —cos 2f8) (33)

where Ay, is the shortening due to fiber bending, and the last term is provided by
the rotation of the locked portion of the kink. Then, for a kink propagating statically
under a fixed shortening A, the upstream boundary stress oy, must satisfy

OuL/E = 6, L/ E+ Apeng +w(1 —cos 2B) (34)

Op=0p oy Op=0p oy

v S e e

(a) (b)

Fig. 6. Transverse kink propagation at kink-angle f: (a) in-plane ; (b) through-the-thickness.
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During steady kink propagation, upstream strain energy is converted to down-
stream strain and plastic shear dissipation. Accordingly, in units of energy per unit
original width, per unit composite thickness

SIUE 0L Wt ouw(l—cos2p) (35)

where W, is the bending strain energy, W, is the work done by the sliding shear
stresses in the bent portions of the kink, and the last term [see eqn (22)] is the work
that has been done by the shear stress 7; in the locked kink segment of length w. We
can eliminate w from eqns (34)—(35) to get the result

2F
oy = Ub+\/f(Wm+ W, —0pApena) (36)

For the upstream propagation stress.
To make this explicit, we adopt the rigid—plastic idealization z4(¢) = 7. The short-
ening due to bending is

Abend=2j(1—cos¢)ds—2f t-cosé

. deids . d¢ (37

and making use of nondimensionalization (27) as well as the connection (29) between
d¢/dS and ¢ leads to

A= d f \/Enﬁ 1—g(B, ¢>)cos B, 8)
w V9B, $—1

Similarly [see eqn (16)] we have

1 dp . Ed [*dé Ld y
W,,,zzLZm g30q; - 2 f ad¢=2\;;ﬁ\/200tﬁﬁ JIBh)—1d¢

(39)
and

sin(f—¢)

tan p—
ptanp cos f8

5 (¢ 2
W = =
=27 L L g(B,0)dods ZTLJ; dgjds do
_nd(tan B3 (8 do

s SET))
4/0/E  Jo JgB d)—1

Putting (38)—(40) into eqn (36) yields the result
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Fig. 7. Kink propagation stress for various kink angles 3.
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for the propagation stress, illustrated in Fig. 7 for several values of f.

The size w of the locked part of the downstream kink may now easily be found
from eqn (34). For the range of parameters in Fig. 7, w does indeed turn out positive,
verifying the presumption of downstream lock-up. The results are shown non-dimen-
sionally in Fig. 8.

6 —— : : :
i e 5
4 \ 12°
1 |
() 5
'\/’d_L E 3: i _— 150 ]
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0 - e , , :
0 2 4 6 8 10
3
dit Y 2z
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Fig. 8. Length w of downstream locked kink segment.
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A few remarks follow about these calculations and results, before we discuss their
significance, or lack thereof, vis-a-vis design.
(a) An asymptotic approximation to (41) for small f gives

oy oy (nB\'"? ..
% (B2) 42
Mt () @)
where
d —3/2
BEZ<TE£> . 43)

Remarkably, if we retain the exact result (24) for gy, in (42), the difference from the
exact answers (41) plotted in Fig. 7 stays well under 1% throughout the range shown.
(b) The small-f results for A, W, and W, are

Abelﬂ [% ~ 37Tﬁ5/2 4Wm ‘CL/‘/E ~ nﬂj/z , and 4W1: TL/E ~ 2nﬁ3/2 (44)

d 8 ’ TLd 2 de

In this approximation the bending strain energy is one-fourth the work of shear stress
in the curved part of the kink ; the exact ratio W,/ W, given by eqns (39)~(40) is only
slightly less than 1/4 at § = 30°. It can be verified that eqns (36) and (44) are consistent
with (42).

(c) The calculation of gy on the basis of eqns (34)—(35) is entirely equivalent to
that implied by the Maxwell stress-displacement diagram shown schematically in Fig.
9. The dots denote the upstream and downstream states of the propagating kink, each
at the same shortening A, consistent with eqn (34). Equality of the shaded regions
ensures that the work done per unit width downstream is the same as that upstream,
as specified by eqn (35).

(d) Locked kink widths predicted in Fig. 8 for steady-state transverse propagation

L(Sb = 2’C|_ /sin 2[3

A

Fig. 9. Maxwell diagram connecting upstream and downstream states during kink propagation.
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can be much greater than the sizes of kink segments bounded by fiber breaks and
studied by Fleck et al. (1995). For example, 1 /E = 0.0008, 8 = 15°, and d/L = 10~*
give w/d ~ 48; from Fleck et al. (1995), we find that for zy/E = 0.0004 and a fiber
failure strain equal to 0.015, the broken-segment size is w/d ~ 16.

(e) If kinking does not occur until a shortening A larger than the critical value
oyL/Efor steady propagation has been imposed, we can expect accelerating transverse
kink propagation under this fixed A. When the process is completed, the stress will
have dropped to oy, and a locked-up, broadened kink can be expected to extend
transversely across the full width of the specimen. The size of the locked portion of
the kink could then be estimated by

_ A—0,LIE—Apen ~ A—0,L/E—(3nd/8)p*" (x /E)~ '

1 —cos2f = 1 —cos28 3)

(f) We have so far ignored the possible effects of testing-machine compliance in the
analysis of transverse propagation. This extra compliance can be roughly taken into
account by replacing the specimen length L, wherever it appears in any of the results,
by a larger effective length L’

DISCUSSION AND CONCLUDING REMARKS

It will not have escaped the reader’s attention that we have taken the kink angle
as a prescribed quantity in our treatments of both band broadening and transverse
propagation, but have said nothing about how f is to be chosen. The § question has
come up repeatedly in the literature, and suggestions of varying degrees of plausibility
have been offered to predict kink angles. A wide variety of ’s have actually been
observed, and simple theoretical criteria for 8 based only on analyses of final, uniform
kinked states are not promising. Sutcliffe and Fleck (1997) have made extensive
numerical 2-D finite element studies of kink initiation, evolution, and propagation,
showing clearly how kink fronts reorient themselves naturally as they propagate in
order to point in stabilized f directions. But while the dependence of § on various
physical parameters was studied, and trends discerned, easy recipes are not yet avail-
able. So in the present work, we leave f unspecified.

But this may not matter much when we consider what roles the band-broadening
stress or the transverse propagation stress might play in design. Because both are
deterministic quantities, not sensitive to initial imperfections, waviness, or notches, it
is enticing to adopt one or the other as a design limit, but a glance at their magnitudes
is sobering. Assuming f < 20°, we could say (Fig. 7) that kink propagation could not
occur if we kept o/t < 3. But this would constitute a severe restriction. For example,
take 1, = 2ty and yy = 0.01; then, the propagation stress o = 617y is substantially less
than the peak kinking stresses ¢, & 167y given by eqn (3) for an imperfection ¢ =3°.
This is just an example, but it highlights the dilemma facing the composites designer :
he or she must come to grips with the statistics and control of imperfections, echoing
the similar situation long faced by engineers who design shells against buckling.
Picking oy, or the even lower band-broadening stress a, as the design stress is unduly
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conservative. On the other hand, the availability of continued deformation at the
band-broadening stress confers a welcome pseudo-ductility on the composite after its
initial kinking stress is reached.

Finally, we suggest that the present results found for the band-broadening stress,
derived on the assumption that there is no fiber fracture, remain approximately
applicable when multiple fiber fracture occurs (Fig. 3). During band broadening
under increasing shortening, the applied stress can be expected to oscillate if fibers
break and lock-up proceeds in discrete steps, not necessarily in unison all along the
kink band; but the average stress during broadening should be about the same as
that for intact fibers.
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