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Abstract

A model for the densi_cation of spherical powders is developed for the early stages of cold
and hot compaction under general loading[ General viscoplastic properties are adopted which
reduce to strain hardening plasticity at ambient temperature and to power law creep at elevated
temperature[ A large strain analysis is carried out to determine the macroscopic compaction
behaviour\ based on the a.ne motion of particles with viscoplastic dissipation occurring at the
contacts between particles[ Random packing is assumed and the model includes the increase
in the number of contacts per particle with densi_cation[ A general prescription is given for
computing the macroscopic stress as a function of strain rate and accumulated strain[ Detailed
results are presented for yield surfaces and creep dissipation surfaces after isostatic and closed
die compaction[ A scalar constraint factor is derived for a random mixture of two populations
of particles with di}erent sizes and strengths[ The predictions include the limiting case of
deformable spheres reinforced with rigid spheres of di}erent size[ Þ 0888 Elsevier Science Ltd[
All rights reserved[

Keywords] Indentation and hardness^ Powder compaction^ Anisotropic material^ Constitutive behaviour^
Porous material

0[ Introduction

The compaction of powders to form both bulk materials and net!shaped parts has
become a successful and well!established process for metals\ alloys\ polymers and

� Corresponding author[ Tel[] "35# 7 689 7530[ Fax] "35# 7 300 1307[ E!mail] bertilÝhallf[kth[se



B[ Stora�kers et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 674Ð704675

ceramics[ In the powder metallurgy "PM# industry a popular process route is cold
compaction by rate!independent plasticity\ followed by pressureless sintering by
di}usional ~ow[ In hot pressing\ compaction is by power law creep and:or di}usional
~ow[ Although signi_cant empirical progress has been made to optimise compaction
procedures with respect to pressure\ temperature and time\ a concise and general
micromechanical model\ free from phenomenological assumptions\ has been lacking[
Early constitutive descriptions have been empirical in nature\ with no underlying
modelling "see for example\ Kuhn and Downey\ 0860 ^ Shima and Oyane\ 0865#[
Herein\ a micromechanical model is developed for powder compaction by both
plasticity and power!law creep\ with the relative density in the practical range of 9[5Ð
9[7[ The essential physics are the relationship between the macroscopic strain and the
local kinematics of particle contact\ and the relationship between local contact loads
and the resulting macroscopic stress[ The model is appropriate for the so!called Stage
I regime\ with relative density of the compact approximately in the range 9[5Ð9[7[

Substantial progress has already been made in the modelling of the plastic and creep
responses of powder aggregates[ Wilkinson and Ashby "0864# laid the foundations for
isostatic compaction by power law creep\ and Fischmeister and co!workers "Fis!
chmeister et al[\ 0867 ^ Fischmeister and Arzt\ 0872# addressed the parallel problem
of isostatic compaction by plastic ~ow[ Several elements from these studies were
combined by Helle et al[ "0874#[ For the early state "designated Stage I#\ when
particulate topology with interconnected porosity still prevails\ they used the geo!
metric model of Arzt "0871# to predict the area and number of contacts during
deformation[ Elementary models for the generation of interparticle loads were used
to predict the plastic and the creep response of the aggregate[ These ideas were
extended to non!isostatic deformation rates for rate!independent plasticity "Fleck et
al[\ 0881a#\ for power law creep "Kuhn and McMeeking\ 0881 ^ Fleck et al[\ 0881b#
and for sintering "Jagota et al[\ 0877 ^ Jagota et al[\ 0889#[ The e}ect of previous
anisotropic straining of the powders\ which determines the contact area distribution
in particles\ was introduced by Jagota et al[ "0877# and by Fleck "0884#[ Fleck "0884#
also explored the e}ects upon the yield surface of the shear strength and cohesive
strength of the contacts[

To date\ most theoretical studies have focused on the compaction of monolithic
equi!sized spherical powder ^ the next step is to address the more practical problem
of the compaction of a powder composite\ comprising two populations of particles
of unequal size and strength[ Recently\ new theoretical tools have become available
for analysing the compaction of such a composite powder\ and it is timely to synthesise
a powder compaction model combining these fresh results with some robust elements
of the previous work[

One of the new tools is a generic treatment of the mutual indentation of two
viscoplastic spheres of dissimilar diameter and strength "Stora�kers et al[\ 0886 ^ Sto!
ra�kers\ 0886#[ This advance builds on the analysis of spherical "Brinell# indentation
of a power law deformation theory solid by Hill et al[ "0878#[ The relation between
indentation depth and contact area was found to be geometrically invariant and from
a detailed _nite element study\ the compliance properties for two equally sized spheres
was calculated[ Explicit results in this spirit have subsequently been computed for
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creep "Bower et al[\ 0882 ^ Stora�kers and Larsson\ 0883#\ for plastic ~ow theory "Biwa
and Stora�kers\ 0884 ^ Ogbonna et al[\ 0884# and for viscoplasticity "Ogbonna et al[\
0884 ^ Stora�kers et al[\ 0886#[ From this standpoint\ isostatic cold and hot compaction
was recently analysed by Larsson et al[ "0885# ^ the model compared favourably with
earlier experimental observations for Stage I compaction of copper\ tin\ bitumen and
lead[ One of the present objectives is to generalise this strategy to account for non!
isostatic cases[

An additional tool for the construction of a compaction model for powder com!
posites is a knowledge of the neighbour statistics for a mixture of spherical particles
made from two di}erent materials and two di}erent sizes\ as provided by Turner and
Ashby "0884a\ b#[

Robust elements from previous work include the cumulative radial distribution
function for particle neighbour positions in a monodispersed powder and the associ!
ated change in the number of contacts during straining "Arzt\ 0871#\ the concept of
a.ne deformations for particle aggregates "Fleck et al[\ 0881a# and the generation of
anisotropic distributions of contact area and contact load due to arbitrary defor!
mations "Fleck\ 0884#[ Fleck "0884# found that the plastic dissipation due to tangential
loads is a small fraction of the total for general straining of a rigid\ ideally plastic
compact[ We shall take advantage of this to make the important simplifying assump!
tion of frictionless indentation between particles[

It is the present purpose to derive general macroscopic constitutive equations for
the compaction of homogeneous and composite powders[ To begin\ the kinematics
associated with a.ne motion are outlined\ viscoplastic indentation theory is reviewed
and the macroscopic stress is related to the local contact forces between individual
particles[ Compaction relations are then obtained for a random homogeneous aggre!
gate of identical spheres[ The full macroscopic theory\ with all parameters having a
physical interpretation\ are speci_ed and the resulting densi_cation equations are
given for practical cases[ For both isostatic and closed die compaction\ the evolution
of the yield surface is calculated for rate independent plasticity\ and creep dissipation
surfaces are determined for power law creep[ The results are generalised for a com!
posite powder comprising a random mixture of two populations of spheres[ A con!
straint factor to account for reinforcement by particles of dissimilar strength and size
is proposed[ Finally\ the domain of validity of the model is discussed[

1[ Foundations of the compaction model

1[0[ Kinematics

Consider a powder aggregate consisting of spherical particles of two di}erent radii
R0 and R1\ in a state of dense random packing as shown in Fig[ 0[ Following a
standard procedure for granular materials\ e[g[ Christo}ersen et al[ "0870# and Walton
"0876#\ a.ne deformations are assumed such that each particle translates at the
velocity prescribed for its centre[ Where contact is made between neighbours\ isolated
indentations can occur[ The aggregate is assumed to experience a macroscopically
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Fig[ 0[ A dense random packing of spheres of two di}erent radii\ and the relative motion of two adjacent
particles[

homogeneous deformation which therefore prescribes the motion of the particles|
centres[ Placing the stationary origin at the centre of a reference particle as shown in
Fig[ 0\ we see that a given particle with its centre initially at position X "a distance r¼
from the reference particle# is carried to a new location with its centre at position

x�F =X "0#

where F is the macroscopic deformation gradient[ It is convenient to decompose x

into its magnitude r\ designating the current distance from the reference particle centre
to the centre of the particle of interest\ and the unit vector n\ de_ning the orientation
with respect to the reference particle\ as shown in Fig[ 0[ Then\

x�rn "1#

Based on the macroscopic deformation gradient\ the stretch ratio l can be computed
as

l"n# �
r
r¼
� ðn ="F−0#T = F−0 = nŁ−0:1 "2#

If the two particles are close enough\ they will indent each other as shown in Fig[ 1[
The overlap of particle centres h\ a function of n\ serves as a useful indentation
parameter and is given by

h"n# �R0¦R1−r"n# �R0¦R1−l"n#r¼ "3#

where R0 and R1 are the radii of the particles indenting each other[ Note that h is
positive for those pairs of particles which ~atten each other in compression[ The rate
of indentation is given by
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Fig[ 1[ Two nearby particles which eventually touch and indent each other[

h¾ �−l¾r¼ "4#

and l¾ is related to the macroscopic deformation rate D by

l¾ � lniDiknk "5#

1[1[ Viscoplastic indentation

Consider two spherical particles experiencing monotonic mutual indentation as
shown in Fig[ 2[ The two spheres are labelled 0 and 1\ with radii R0 and R1\ respectively[
In the current state the contact area is of radius a and the particle centres have
overlapped by h[ Particle 0 is made from viscoplastic material with a uniaxial stress
response given by
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Fig[ 2[ Two particles identing each other[

s�s0o
Mo¾N "6#

where s0 is a strength parameter\ o is the axial strain\ o¾ is its rate\ M is a hardening
exponent and N is a creep index[ An equivalent law governs material 1\ with s0

replaced by s1[ Both particles are taken to have the same hardening exponents and
the same creep indices[ Based on indentation theory and von Mises isotropic ~ow
theory\ the solution for the indentation load F is "Stora�kers et al[\ 0886 ^ Stora�kers\
0886#

F� hh"1¦M−N#:1h¾N "7#

where

h� 10−
M
1

−
2N
1 20−M−N"0¦1N#pc1¦M¦Ns9R9

0−
M
1

−
N
1 "8#

R−0
9 �R−0

0 ¦R−0
1 "09#
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s−q
9 �s−q

0 ¦s−q
1 "00#

and

q�"M¦N#−0 "01#

The parameter c in eqn "8# is an indentation invariant\ and depends only upon the
material constants M and N[ From a detailed _nite element study it was found that
the invariant c is given\ to within a very good approximation\ by

c1 � 0[32 exp ð−9[86"M¦N#Ł "02#

The contact radius a is related to the indentation depth h by

a1 � 1c1hR9 "03#

For later use it is helpful to introduce a creep potential fc"h¾# for a single contact
by integrating the indentation load F with respect to h¾ at _xed h\ so that

fc"h¾# 0 g
h¾

9

F"h¾?# dh¾?\F� 1fc:1h¾ "04#

giving\ via eqn "7#\

fc �
0

N¦0
hh

1¦M−N
1 h¾N¦0 "05#

1[2[ Macroscopic stress

In the early stages of compaction\ when particles can still be represented as spheres
with only small circular contacts around their surface "i[e[ Stage I#\ a macroscopic
viscoplastic potential F"D# can be computed as

F�V−0 s
J

"fc#J "06#

where V is a representative volume of the powder aggregate containing many particles\
the summation is carried out over all particleÐparticle junctions in the aggregate and
"fc#J is the value of the potential from eqn "05# for junction J[ This formulation
neglects the dissipation due to shearing motions at each junction and is exact for
frictionless spheres[ Our experience "Kuhn and McMeeking\ 0881 ^ Fleck 0884# sug!
gests that for values of q greater than about two\ the dissipation due to shearing
motions can be neglected in the macroscopic average even for well!bonded aggregates[

The macroscopic average stress S for the aggregate subjected to a deformation rate
D is then given by

Sik �
1F
1Dik

�V−0 s
J 6F

1h¾

1Dik7J

"07#

where F"h¾# is given by eqn "7#[ In the case of a cohesionless powder F vanishes when
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the particles lose contact at a junction[ In principle\ eqn "07# gives the exact result if
h¾ were known at each junction[ Instead\ we assume a.ne deformation\ in which h¾ is
given by eqns "4# and "5#[ The macroscopic stress is then given by

Sik �−
0
V

s
J

"Flr¼nink#J "08#

This result is equivalent to an average for the aggregate value given by Christo}ersen
et al[ "0870#[

In the following section\ Stage I compaction of a homogeneous viscoplastic aggre!
gate is addressed[ Then\ the analysis is broadened to the case of composite powders[

2[ Homogeneous aggregate

Consider _rst an aggregate of n uniform spheres of radius R0 all made from the
same material 0 with strength parameter s0[ The aggregate volume V is related to the
volume of each sphere V0 and to the relative density D by

V�
V0n
D

�
3pR2

0n
2D

"19#

The initial relative density is taken to be that of dense random packing\ D9 �9[53[
From a distribution function obtained by Mason "0857#\ based on data by Scott
"0851#\ Arzt "0871# proposed that this initial state could be approximated by a
cumulative radial distribution function for particle centres adjacent to a reference
sphere ]

G"r¼# �Z9¦C 0
r¼

1R0

−01\
r¼

1R0

− 0 "10#

where G is the number of particle centres within a radius r¼ from the centre of the
reference particle and Z9 and C are constants[ "This form is su.cient for the values
of r¼:R0 which we encounter in our model[# The best estimates for the constants are
C�04[4 and Z9 �6[2 "Arzt\ 0871#[ The latter value implies that on average each
sphere initially has 6[2 contacts with neighbours[

For a.ne deformations\ eqn "3# provides the indentation h for two particles orig!
inally having their centres a distance r¼ apart[ Furthermore\ with S0 � 3pR1

0\ eqn "10#
shows that there are initially dG:S0 particles per unit reference sphere surface area
having their centres between r¼ and "r¼¦dr¼# from the reference particle[ Summing over
all such contacts and attributing half of the contribution to each particle making the
contact\ we _nd that the contribution to eqn "08# from a typical reference particle is

Sik �−
R0Z9

VS0 gS0

dS0 ðFIlninkŁ−
0

1VS0 gS0

dS0 ðlninkŁg
1R0:l

1R0

dr¼ $Fr¼
dG
dr¼ % "11#

where FI is the load on an original contact\ of orientation n\ which has existed from
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the beginning of consolidation and therefore for which r¼ �1R0[ For these original
contacts\ FI follows from eqn "7# as

FI � hhI

1¦M−N
1 h¾N

I "12#

expressed in terms of the overlap hI\

hI 0 1R0 ð0−l"n#Ł "13#

and the rate of overlap

h¾ I �−1R0l¾ "n# "14#

by eqns "3# and "4#\ respectively[
The integrals with respect to S0 in eqn "11# are taken over the surface of the

reference particle with radius R0[ The _rst term on the right hand side of eqn "11# is
the contribution from these original contacts whereas the second term arises from
contacts made during compaction[ Such new contacts are associated with particles
originally having their centres beyond a distance 1R0 from the reference particle centre
but not beyond a distance 1R0:l from it[ Since there are n particles within the aggregate
volume V\ the total stress S is simply n times the result given in eqn "11#[

It follows from eqns "3#\ "4#\ "7# and "12# that the load F on a new contact can be
expressed in terms of FI as

F� 0
0−lr¼:1R0

0−l 1
1¦M−N

1

0
r¼

1R01
N

FI "15#

Consequently\ by "19#Ð"11# and "15#\

Sik �−
2DZ9

S1
0 gS0

dS0"FIlnink#

×$0¦
C

1Z9R0 g
1R0:l

1R0

dr¼ 60
0−lr¼:1R0

0−l 1
1¦M−N

1

0
r¼

1R01
N¦0

7% "16#

The integral with respect to r¼ is di.cult to evaluate analytically in general[ However\
the integral may be represented accurately by its asymptotic expansion for 0−l ð 0\
giving

Sik �−
2DZ9

S1
0 gS0

dS060¦
1C"0−l#

Z9l
N¦1 $

0
3¦M−N

−
"N¦0#"0−l#

5¦M−N %7FIlnink

"17#

with FI computed from eqn "12#[ This integration is exact when N�9 "i[e[ the rate
independent limit#[

In addition to calculation of macroscopic stress\ the number of contacts Z and the
total area of contact At for a representative particle follow directly from the assump!
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tions of a.ne deformation\ eqns "0#Ð"3# and indentation theory\ eqn "03#[ Recall that
dG:S0 particles per unit area of reference sphere initially have their centres between r¼
and "r¼¦dr¼# from the reference particle[ The indentation overlap h for these neigh!
bouring particles is given by eqn "3# and the associated radius of contact a is speci_ed
by eqn "03#\ with R9 �R0:1[ The total area of contact At for a representative particle
follows as

At �
0
S0 gS0

dS0 g
1R0:l

1R0

dr¼
dG
dr¼

pa1 "18#

Upon substituting for G from eqn "10#\ and performing the integration in eqn "18#
with respect to r¼\ we _nd that At is given by

At �
c1

3 gS0

dS0 61Z9"0−l#¦C 0l¦
0
l
−117 "29#

The number of contacts per particle Z follows directly as

Z�
0
S0 gS0

dS0 g
1R0:l

1R0

dr¼
dG
dr¼

�Z9¦
C
S0 gS0

dS0 0
0
l
−01 "20#

by eqn "10#[
In the limiting case of in_nitesimal straining\ the stretch ratio l simpli_es to

l¼ 0¦Eijninj\ where E is the macroscopic in_nitesimal strain tensor[ This limit is
valid for small amounts of consolidation and is likely to be broadly applicable since
the relative density of interest will generally range from D�D9 �9[53 to D�9[79\
say[ At about 79) relative density\ the three!dimensional\ network of porosity begins
to close o} into isolated voids and there is a transition to Stage II in which the closure
of cavities rather than the ~attening of isolated junctions controls the deformation
"Helle et al[\ 0874#[ For the case of in_nitesimal straining\ hI and h¾ I are evaluated
from linear strain kinematics\ and follow from eqns "13# and "14# as

hI �−1R0niEijnj "21#

and

h¾ I �−1R0niEþijnj "22#

respectively[ Additionally\ if the number of contacts is kept constant then the term in
curly brackets in eqn "17# reduces to unity\ and eqn "17# simpli_es to

Sik �−
2hD9Z9

S1
0

"1R0#
1¦M¦N

1 gS0

dS0 ð"−njEjlnl#
1¦M−N

1 "−npEþpqnq#NninkŁ "23#

Of particular interest is the result for N�M�9\ which is the rate independent
non!hardening result[ This gives
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Sij � 0
5hD9Z9R0

S1
0 1 gS0

dS0 ðninjnknlEklŁ "24#

which simpli_es to

Sij � 0
hD9Z9

4pR0 1 $Eij¦
0
1
dijEkk% "25#

upon use of the identity "see for example\ Ogden\ 0873#\

gS0

dS0

S0

ðninjnknlŁ �
0
04

"dijdkl¦dikdjl¦dildjk# "26#

The suggested values for the parameters in eqn "25# "i[e[ h�2pc1s0R0\ c1 �0[32\
Z9 �6[2# lead to

Sij � 5[2s0D9 ðEij¦
0
1
EkkdijŁ "27#

The form of eqn "27# is equivalent to that of an isotropic linear elastic law with a
Young|s modulus equal to 6[7s0D9 and a Poisson ratio of 9[14[ The use of a _xed
value of D9 is consistent with asymptotic expansions which lead to the linearised
form of eqn "27#[ The conclusion\ therefore\ is that rigid\ ideally plastic powders
experiencing consolidations which generate monotonic compressive loads on all junc!
tions respond macroscopically as if they are linear elastic and isotropic[ A predicted
value for the Poisson|s ratio of 9[14 is a direct consequence of the assumption of
frictionless contact ] only central forces act between particles\ and shear and bending
loads are neglected[ This is reminiscent of the rari!constant theory of elasticity\ as
summarised by Love "0816#[ We further note in passing that Shima and Oyane "0865#
measured a {plastic Poisson ratio| of 9[14Ð9[2 in the uniaxial compression of copper
powder[

For in_nitesimal straining but arbitrary N and M\ expressions for the total area of
contact At and number of contacts per particle Z simplify from eqns "29# and "20# to

At �−
c1

5
Z9EkkS0 "28#

and

Z�Z9 "39#

2[0[ Isostatic compaction

In isostatic compaction of homogeneous spherical powder\ both FI and l are
independent of n[ The stretch ratio is given by

l�"D9:D#0:2 "30#

where it is assumed that pressure!driven compaction commences at random dense
packing[ Similarly\ the rate of change of l is
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l¾ �−
0
2 0

D9

D 1
0:2 Dþ

D
"31#

Consequently\ the indentation hI for junctions initially in contact is

hI � 1R0 ð0−"D9:D#0:2Ł "32#

by eqns "13# and "30#\ and likewise

h¾ I �
1R0

2 0
D9

D 1
0:2 Dþ

D
"33#

by "14# and "31#[ It follows from eqn "12# that

FI � h"1R0#
1¦M¦N

1 ð0−"D9:D#0:2Ł
1¦M−N

1 $0
D9

D 1
0:2 Dþ

2D%
N

"34#

On noting the identity

gS0

nink dS0 �
0
2
S0dik "35#

the macroscopic stress can be written in the form

Sik �−Pdik "36#

where\ from eqns "17# and "34#\ the pressure P required to compress the aggregate is

P�
khDZ9

S0

"1R0#
1¦M¦N

1 $0−0
D9

D 1
0:2

%
1¦M−N

1

0
D9

D 1
N¦0

2 0
Dþ

2D1
N

"37#

and

k0 0¦
1C
Z9 0

D
D91

N¦1
2

$0−0
D9

D 1
0:2

% 6
0

3¦M−N
−

"N¦0#ð0−"D9:D#0:2Ł
5¦M−N 7

"38#

The densi_cation rate Dþ can be obtained from eqn "37# by rearrangement\ which
shows that for any pressure P\ Dþ is in_nite at random dense packing "D�D9#[ For
the rate independent case\ N�9\ graphs of the pressure P vs the density D for selected
values of M are shown in Fig[ 3[ The plots are terminated at the transition to Stage
II at D�9[79[ It should be noted that the results in Fig[ 3 are relatively sensitive to
the strain hardening exponent M[ This sensitivity of macroscopic pressure to M is
associated with the strong dependence of h on M\ and can be explained as follows[
Since the level of e}ective strain in the vicinity of each contact is much less than unity\
the ~ow stress distribution is much less than s9 and increases steeply with depth of
indentation[
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Fig[ 3[ Macroscopic pressure vs density for rate independent plasticity during isostatic compaction[ N � 9[

For the rate dependent but non!hardening case "M�9# the pressure P\ normalised
by "Dþ:D#N\ is plotted against relative density in Fig[ 4[ The plots are extended up to
D�9[79 as before[ The rigid\ ideally plastic limit N�9 is included in the _gure[

The parameter k in eqn "38# equals unity when the e}ects of new contacts during

Fig[ 4[ Macroscopic pressure at a given densi_cation rate vs relative density for a power law creeping
material during isostatic pressing[ M � 9[



B[ Stora�kers et al[:Journal of the Mechanics and Physics of Solids 36 "0888# 674Ð704687

compaction are neglected[ Inspection of eqn "38# shows that up to D�9[79\ k di}ers
little from unity and the e}ects of new contacts can be neglected[ For example\ in the
rigid\ perfectly plastic limit N�M�9\ with D9 �9[53\ D�9[79\ C�04[4 and
Z9 �6[2\ the parameter k�0[97\ and the error in P by neglecting new contacts is
only 7)[

It is instructive to compare the predictions of the kinematically non!linear theory
presented above with the version neglecting new contacts and assuming in_nitesimal
strain[ Upon specialising eqn "23# to the isostatic limit\ the pressure P is given by

P�
hD9Z9

p
"1R0#

M¦N−1
1 $0

D−D9

2D9 1
1¦M−N

1

0
Dþ

2D91
N

% "49#

Note that the e}ect of new contacts is not present in the in_nitesimal strain version\
but this leads to negligible error as discussed above[ The predictions of the in_nitesimal
strain "49# are in good agreement with those of the full theory\ as seen by the direct
comparisons shown in Figs 3 and 4[ A detailed inspection of relations "37# and "49#
reveals that the small di}erence between the two predictions arises mainly from the
strengthening contribution of new contacts and not from the e}ect of non!linear
kinematics vs linear kinematics[

For completeness\ the total area of contact At and number of contacts Z for a
representative particle in the isostatic case are obtained from eqns "29# and "20# for
the full non!linear theory\ giving

At �
c1

3 61Z9 $0−0
D9

D 1
0:2

%¦C $0
D9

D 1
0:2

¦0
D
D91

0:2

−1%7S0 "40#

and

Z�Z9¦C $0
D
D91

0:2

−0% "41#

In the limit of in_nitesimal straining these expressions simplify to the previous results
eqns "28# and "39#\ respectively[

2[1[ Closed die compaction

In addition to isostatic compaction\ closed die compaction is of major industrial
relevance\ particularly in the powder metallurgy industry[ A typical processing route
is to cold!compact metallic powder along the major axis of a cylindrical closed die\
later followed by sintering at elevated temperature and at atmospheric pressure[
Alternatively\ the compaction and sintering processes are combined in a single hot
compaction operation[ The case of closed die compaction has been studied previously
by Fleck et al[ "0886#\ and only the main results are summarised below[

In closed die compaction\ with the compression direction parallel to the x2!axis\
the components of the deformation gradient are given by
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Fij � dij "42#

except that

F22 �L "43#

where L is the compaction ratio[ With f being the angle between a given orientation
and the x2!axis as shown in Fig[ 0\ eqn "2# provides

l−1 � 0¦"L−1−0# cos 1f "44#

This result can be used in eqns "13# and "14# to give hI"f#\ and h¾ I"f#[ FI"f# then
follows from eqn "12#[ In addition\

D:D9 � 0:L "45#

where\ as before\ it is assumed that compaction commences at random dense packing[
The results above\ along with eqn "17#\ have been used to compute S�S22 and

T�S00 �S11 for closed die compaction\ for two values of the strain hardening
exponent M in the rate independent limit "N�9#[ The results are shown in Fig[ 5
plotted against the relative density[ As for the case of isostatic compaction\ the results
are sensitive to the strain hardening exponent M\ but examination of eqn "17# reveals
that most of the sensitivity is accounted for by h[ The level of macroscopic stress at
each density depends on the area of junctions produced by the deformation and on
the average indentation pressure at each contact[ As the contact area between particles
is non!uniform with respect to relative orientation of particles\ the axial stress S di}ers
signi_cantly from the transverse stress T[ The larger indentations and junctions near

Fig[ 5[ Macroscopic stress vs relative density for rate independent plasticity during closed die compaction[
N � 9[
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the poles of the reference sphere compared to near the equator lead to an axial stress
that is larger than the transverse stress[ For example\ in the initial stages of compaction
of a rigid\ perfectly plastic solid the magnitude of the axial stress is three times that
of the transverse stress\ as follows from eqn "25# and as discussed earlier by Fleck et
al[ "0886#[

The results for S and T from in_nitesimal strain theory\ eqn "23#\ have been plotted
in Fig[ 5 for comparison[ In this case

niEijnj �"L−0# cos1 f "46a#

and

niEþijnj �Lþ cos1 f "46b#

The axial stress S22 can be obtained in closed form by integration of eqn "23# over S0\
giving

S0S22 �
−0

4¦M¦N
2hD9Z9

p
"1R0#

M¦N−1
1 0

D−D9

D9 1
1¦M−N

1

0
Dþ
D91

N

"47#

The transverse stress T is obtained by numerical integration of eqn "23#[ It can be
seen from Fig[ 5 that these results for in_nitesimal straining approximate the _nite
deformation results fairly well[ Further details on the comparison between the _nite
strain and in_nitesimal strain results are given by Fleck et al[ "0886# in the limiting
case M�N�9\ for both closed die compaction and isostatic compaction[

The axial stress S\ normalised by "Dþ:D#N\ is plotted in Fig[ 6 against relative density
for closed die compaction\ upon taking M�9[ The response is displayed for selected

Fig[ 6[ Macroscopic axial stress at a given densi_cation rate vs relative density for a power law creeping
material during closed die compaction[ M � 9[
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values of the creep exponent N\ including the rigid\ ideally plastic limit\ N�9[ Plots
are given both for the _nite strain result eqn "17# and for the in_nitesimal strain case\
eqn "23#[ Again\ it can be seen that the simpler in_nitesimal theory approximation of
eqn "23# predicts the more exact results from eqn "17# quite well[

2[2[ Yield surfaces

For the rate independent case\ N�9\ all combinations of macroscopic stress which
cause further deformation for a given state of the powder aggregate can be computed
from eqn "17# to predict a yield surface[ Plastic ~ow is normal to the yield surface\ as
discussed by Fleck et al[ "0881#\ following the general proof outlined by Gurson
"0866#[

The current state of the powder is characterised by hI"n# as given by eqn "13#\ with
l"n# determined by the prior deformation F via eqn "2#[ At further yield\ the junction
load FI in eqn "17# is computed for any instantaneous macroscopic strain rate applied
to the aggregate[ The junction load FI for use in the yield stress calculation is given
by eqn "12# "with N�9# if the junction continues to experience compression ^ i[e[
h¾ I × 9 from eqn "14#[ For a given orientation\ if h¾ I ¾ 9 due to the imposed deformation
rate\ so that a junction separates or there is no relative motion across it\ a di}erent
choice is made for FI[ If h¾ I �9\ we enforce FI �9 since no deformation rate is imposed
at the contact of interest[ If the powder is cohesionless\ FI vanishes when h¾ I ³ 9
because separation of the powder particles is not resisted[ If there is full cohesion
between the particles and h¾ I ³ 9\ FI is given by the negative of eqn "12# "with N�9#\
since the junction sustains a tensile load[

In summary\ the procedure to compute a yield surface is _rst to generate a current
state by a monotonic deformation and then to impose a full range of direction of
subsequent deformation rates on that current state[ The stresses for each direction of
deformation rate are computed from eqn "17# using the procedure outlined above for
evaluating FI at each orientation[ The resulting locus of stresses from eqn "17# de_nes
the current yield surface in macroscopic stress space S[ A similar procedure can be
used with eqn "23# to determine the yield surface based on in_nitesimal strain theory[

We shall restrict our presentation of results to the axisymmetric case[ Yield surfaces
after prior isostatic consolidation from D9 �9[53 to D�9[69 are shown in Fig[ 7\
and after prior closed die compaction in Fig[ 8[ Results with and without cohesion
are depicted for various hardening exponents M and are computed from eqn "17#[
The yield surfaces are plotted as contours of e}ective stress S�S−T vs mean stress
Sm � 0

2
S¦1

2
T for axisymmetric states of stress[ Associated ~ow prevails for the macro!

scopic aggregate\ so that the macroscopic deformation rate D is normal to the yield
surface[ In Fig[ 7 and in subsequent _gures\ the components of the deformation rate
are the dilatancy Hþ 0 1Eþ00¦Eþ22 "parallel to the abscissa# and the deviatoric strain
rate Eþ 0 1"Eþ22−Eþ00#:2 "parallel to the ordinate#[ The yield surfaces for the perfectly
plastic case M�9 are the same shape as predicted in our previous work on isostatic
compaction "Fleck et al[\ 0881a ^ Fleck\ 0884#[ The vertices at the loading point on
the yield surfaces on the hydrostatic stress axis have been discussed already in these
papers[
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Fig[ 7[ Yield surfaces after isostatic compaction to a relative density of 69) for rate independent plasticity
of a cohesive and a cohesionless aggregate[ N � 9[

Fig[ 8[ Yield surfaces after closed die compaction to a relative density of 69) for rate independent plasticity
of a cohesive and a cohesionless aggregate[ N � 9[
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Yield surfaces after prior closed die compaction from D9 �9[53 "i[e[ L�0# to
D�9[69 "i[e[ L�9[803# are shown in Fig[ 8[ They are computed from eqn "17# and
results with and without cohesion are given for various strain hardening exponents[
The yield surface for the perfectly plastic case\ M�9\ is essentially the same as that
given previously for prior closed die compaction by Fleck "0884# and represents the
shape of all the yield surfaces quite well[ Fleck "0884# compared his predictions with
experimental data on closed die compaction reported elsewhere in the literature and
found good agreement[ More recently\ Akisanya et al[ "0886# have performed triaxial
tests on copper powders and _nd that closed die compaction gives strong anisotropy
in comparison with isotropic compaction\ with the formation of a corner at the
loading point[ The model of Fleck "0884# gives similar predictions to those reported
here\ and was found to be in excellent agreement with the measurements of Akisanya
et al[ "0886#[

The vertices on the yield surfaces in Fig[ 8 lie at the loading point associated with
closed die compaction and at its image at the opposite end of the yield surface[ The
elongation of the yield surface in Fig[ 8 compared to those in Fig[ 7 is caused by the
larger indentations and larger junction areas near the poles of the reference particle
which make the aggregate strong in response to deformation rates close to uniaxial
strain[ On the other hand\ deformation rates orthogonal to the uniaxial strain direction
are resisted mainly by junctions which are mildly indented and therefore have rela!
tively small areas[ As a result\ the yield surface is relatively narrow in the second
and fourth quadrants giving rise to a weak response to deformation rates close to
axisymmetric plane strain[ It may be further concluded from Figs 7 and 8 that the
shapes of the respective yield surfaces do not vary much with the hardening exponent ^
the major factor dictating yield surface shape is the geometry of local contacts[

Yield surfaces at D�9[69 for the perfectly plastic case for both prior isostatic
consolidation and for prior closed die compaction are shown in Fig[ 09 for a powder
with full cohesion[ Results are given for the complete model computed from eqn "17#\
for the model when new contacts are ignored ði[e[ eqn "17# with C�9Ł and for
in_nitesimal strain theory with no new contacts\ eqn "23#[ It can be seen that at
D�9[69 there is little di}erence among these predictions[ This suggests that the
in_nitesimal strain theory\ which also neglects the formation of new contacts\ is
adequate at this relative density[ The discrepancies among the models increases with
relative density\ but even at D�9[79 the di}erences are modest\ as was already noted
in the remarks associated with Fig[ 3[

2[3[ Creep dissipation surfaces

For the case of a viscoplastic aggregate "any M and N� 9#\ eqn "17# is used to
calculate the locus of values of macroscopic stress which give rise to the same dis!
sipation rate for a given state of the powder aggregate[ This locus forms a surface of
constant dissipation[ The procedure is similar to that used for computing the yield
surface ] _rst\ a current state is generated by contact growth under _xed macroscopic
stress to a desired level of relative density D and second\ a range of subsequent virtual
deformation rates is imposed on the powder and the associated macroscopic stress
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Fig[ 09[ Yield surfaces after compaction to a relative density of 69) for the rigid\ ideally plastic limit of a
cohesive aggregate showing results for various versions of the model[ M � N � 9[

states are computed from eqn "17#[ The load FI on a junction is computed according
to eqn "12#[ For the case of full cohesion between particles\ FI is compressive\ tensile
or vanishes according to whether a junction experiences continued indentation\ sep!
aration or is not deforming under the imposed virtual deformation rate D[ The
absolute value of h¾ I is used in eqn "12# and the sign of FI is made to agree with the
sign of h¾ I[ Tensile loads are excluded for cohesionless powder as before[

For each macroscopic virtual deformation rate D about the current state\ the creep
dissipation per unit volume of aggregate Wþ c is computed as

Wþ c �SijDij "48#

The magnitude of the virtual deformation rate is then scaled until Wþ c equals the same
prescribed value for all directions of virtual deformation rate imposed on the current
powder aggregate[ The macroscopic stress corresponding to each direction of virtual
deformation rate is calculated and plotted as a surface of constant dissipation in stress
space[ A similar procedure can be used with eqn "23# to determine the dissipation
surfaces based on in_nitesimal strain theory[

It is convenient to introduce a stress potential C"S# which is the dual of the creep
potential F"Dþ#\ de_ned by
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C"S# � sup
Dij

ðSijDij−F"D#Ł "59#

The stress potential C"S# can be stated directly as

C"S# � g
S�ij�Si j

S�ij�9

Dij"S�# dS�ij \ Dij �
1C"F\S#

1Sij

"50#

It is evident that the deformation rate D is normal to the potential surface C"S# in
stress space\ and that C is homogeneous and of degree "N¦0#:N in S[ Following the
argument of Rice "0869# it is straightforward to show that C"S# is convex provided
the indentation rate at each contact between particles increases with increasing contact
load[ Furthermore\ in the rate independent limit "N: 9#\ the macroscopic yield
surface displays both convexity and normality[

The stress potential C"S# is related directly to the dissipation Wþ c by

C�
N

N¦0
Wþ c "51#

Thus\ Wþ c is homogeneous and of degree "N¦0# in S[ In the spirit of Calladine and
Drucker "0851# it is convenient to introduce a macroscopic e}ective stress SÞ which is
homogeneous and of degree one in S such that Wþ c depends only upon the scalar SÞ\
viz

Wþ c"Sij# 0s9 0
SÞ"Sij#

s9 1
N¦0

N
[ "52#

Creep dissipation surfaces in stress space are presented below in the form of contours
of SÞ:s9 �0[ In the limit of N: 9\ the macroscopic yield surface for the rigid\ perfectly
plastic solid is recovered\ as discussed by Cocks "0883#[

Representative results are now given for the case of prior isostatic consolidation
from D9 �9[53 to D�9[69 ^ the resulting creep dissipation potential surfaces are
shown in Fig[ 00[ Results with and without cohesion are depicted for the non!
hardening case M�9 for various creep exponents N and are computed from eqn
"17#[ The shape of the creep dissipation surfaces for values of N close to zero are in
close agreement with those given by Kuhn and McMeeking "0881# for isostatic
compaction with full cohesion[

Creep dissipation surfaces after prior closed die compaction from D9 �9[53 to
D�9[69 are computed from eqn "17# and are plotted in Fig[ 01[ The surfaces are
displayed for both cohesion and no cohesion\ with M�9 and with various creep
exponents N[ The elongated shape arises from the anisotropy of indentations and
junction areas around particles caused by the prior uniaxial strain[ There is a strong
resemblance with the corresponding yield contours in Fig[ 8\ and the shapes of the
dissipation surfaces do not vary much with the creep exponent N[ In the limit N�9\
the dissipation surface reduces to the yield surface for perfect plasticity with vertices\
as noted above[

Creep dissipation surfaces are compared for prior isostatic consolidation and for
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Fig[ 00[ Contours of creep dissipation after isostatic compaction to a relative density of 69) for the power
law creep of a cohesive and a cohesionless aggregate[ M � 9[

Fig[ 01[ Contours of creep dissipation after closed die compaction to a relative density of 69) for the
power law creep of a cohesive and a cohesionless aggregate[ M � 9[
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Fig[ 02[ Contours of creep dissipation after compaction to a relative density of 69) for the power law
creep of a cohesive aggregate showing results for various versions of the model[ M � 9\ N � 9[2[

prior closed die compaction in Fig[ 02 for a powder with full cohesion ^ we take
D9 �9[53\ D�9[69\ M�9 and N�9[2[ Dissipation surfaces are given for the
complete model from eqn "17#\ for the model when new contacts are ignored ði[e[ eqn
"17# with C�9Ł and for in_nitesimal strain theory\ eqn "23#[ Again\ there is little
di}erence between the predictions of the full theory and the in_nitesimal version[ This
suggests that the in_nitesimal strain theory\ which also neglects the formation of new
contacts\ is adequate for a small amount of compaction[ The discrepancies among
the models increase with relative density\ but even at D�9[79\ the di}erences can be
neglected for practical purposes\ as was noted in the remarks associated with Figs 3
and 4[

3[ Composite powders

So far we have derived constitutive relations for a monolithic powder[ Now consider
a mixture of n spheres comprising two populations of particles ] type 0 having strength
s0 and radius R0\ and type 1 having strength s1 and radius R1[ We seek the macroscopic
compaction response of the aggregate under multi!axial loading[

The strength ratio k is de_ned by
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k�s1:s0 "53#

and the size ratio by

r�R1:R0 "54#

Let f0 be the number fraction of type 0 particles and f1 that of type 1 so that

f0¦f1 � 0 "55#

The indentations for each junction are controlled by the local contact force and the
hardnesses and sizes of the particles[ We need to distinguish between the inter!
penetration h at the various types of contact ] we express the overlap between two
neighbouring type 0 particles by h00\ the overlap between two neighbouring type 1
particles by h11\ and the overlap between a type 0 particle and a type 1 particle by h01

or\ equivalently\ by h10[ We shall denote the various types of overlap using notation
hab\ with the Greek subscripts a and b ranging from 0Ð1[ Here\ a repeated Greek su.x
does not imply summation[ In similar fashion\ the contact force is labelled Fab\ and
the centreÐcentre spacing of two contacting particles is designated by

Rab 0Ra¦Rb "56#

We shall calculate the compaction response for the mixture of particles[ In view of
the prior discussion\ we assume in_nitesimal strain kinematics so that l¼ 0 and we
neglect the formation of new contacts[ The macroscopic stress for a two phase
composite follows from eqn "08# as

Sij �−
0
V

s
J

"FabRabninj#J "57#

where the summation is taken over all contacts J\ in a composite of volume V[
It remains to determine the contact force distribution Fab"n#[ In general\ more or less

sophisticated trial functions can be used\ but here a straightforward Reuss approach is
adopted such that all junctions transmit the same force at all particulate contacts in
a given direction n[ A prototype model of this kind for isostatic compaction of a
powder composite was used by Bouvard "0882# for equally sized populations of
creeping and rigid particles[ Accordingly\ for identical contact forces
F01"n# �F11"n# �F00"n#[

Upon introducing contact co!ordination numbers\ Z00 is\ on average\ the number
of contacts each type 0 particle makes with other type 0 particles\ Z01 is the average
number each type 0 particle makes with type 1 particles\ and so on[ Note that
f0Z01 � f1Z10\ and the average co!ordination number of all particles ZC is given by

ZC �f0"Z00¦Z01#¦f1"Z10¦Z11#[ "58#

The subscript C here and elsewhere refers to the composite[ Thus\ "57# can be
expressed explicitly as

Sij �−
1

ZCV
s
J

"ninj ð f0Z00R0F00¦f0Z01"R0¦R1#F01¦f1Z11R1F11Ł#J "69#
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for a statistically homogeneous\ uncorrelated and isotropic mixture[ Turner and
Ashby "0884a\ b# provide the following estimates ]

Z00 �
f0

" f0¦f1r#1
ZC

Z01 �
f1r

" f0¦f1r#1
ZC

Z10 �
f0r

" f0¦f1r#1
ZC

Z11 �
f1r

1

" f0¦f1r#1
ZC "60#

in terms of the average co!ordination number ZC over all particles[ Further\ Turner
and Ashby "0884# suggest that ZC satis_es the empirical law

ZC � 01DC "61#

where DC is the initial relative density of the aggregate[ Upon using the estimates "69#
and "60#\ the macroscopic stress in "69# reduces to

Sij �−
1R0

V
" f0¦f1r

1#
" f0¦f1r#

s
J

"ninjF00#J "62#

For future use\ this relation is re!written in the alternative form\

Sij �−
2DCZC

3pR1
0

" f0¦f1r
1#

" f0¦f1r#" f0¦f1r
2# gS0

ðninjF00Ł
dS0

S0

"63#

upon "i# averaging over all orientations\ "ii# noting that the volume V of the aggregate
is related to the number of particles n by

V�
3pR2

0

2
n

DC

" f0¦f1r
2# "64#

and upon "iii# recalling that the total number of contacts in the aggregate equals
nZC:1[

The dissipation per unit volume of the composite is the sum of the dissipations at
each contact\

Wþ c �SijEþij �
0
V

s
J

"Fabh¾ab#J "65#

Once the assumption of equal local contact forces has been adopted\ the indentation
rates h¾ab may be deduced from relations "7#Ð"01# using the notation
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h¾ab"n# 0 gabh¾00"n# "66#

where the parameters gab are given explicitly by

g00 � 0 "67a#

g01 � 0
0¦k−

0
M¦N

1 1
1"M¦N#
1¦M¦N

0
0¦r

1r 1
1−M−N
1¦M¦N

"67b#

and

g11 �k−0 1
1¦M¦N1r−01−M−N

1¦M¦N1 "67c#

With relation "66# in hand\ the dissipation rate Wþ c can be expressed in terms of the
dissipation rate between type 0 particles\ by substitution of "60# and "67# into "65#\
and by following the same line of argument that led from "57#Ð"69#\ to obtain

Wþ c �SijEþij �
0
V

" f 1
0¦1f0f1rg01¦f 1

1r
1g11#

" f0¦f1r#1
s
J

"F00h¾00#J "68#

To proceed\ the indentation rate h¾00"n# is related to the macroscopic strain rate by
multiplying each side of "62# by Eþij and equating with the dissipation rate "68#\ giving

−Eþij

1R0

V
" f0¦f1r

1#
" f0¦f1r#

s
J

"ninjF00#J �
0
V

" f 1
0¦1f0f1rg01¦f 1

1r
1g11#

" f0¦f1r#1
s
J

"F00h¾00#J

"79#

Since this relation holds for arbitrary F00\ we _nd

h¾00 �−
" f0¦f1r#" f0¦f1r

1#

" f 1
0¦1f0f1rg01¦f 1

1r
1g11#

1R0"Eþijninj# "70#

which integrates to give

h00 �−
" f0¦f1r#" f0¦f1r

1#

" f 1
0¦1f0f1rg01¦f 1

1r
1g11#

1R0"Eijninj# "71#

Now F00 is related to h00 and h¾00 via F00 � h00"h00#"1¦M−N#:1"h¾00#N according to "7#\ and
the macroscopic stress can thereby be expressed in terms of Eij and Eþij by substitution
of "70# and "71# into "63#\ giving

Sik �−K
2h00DCZC

S1
0

"1R0#
1¦M¦N

1 gS0

dS0 ð"−njEjlnl#
1¦M−N

1 "−npEþpqnq#NninkŁ

"72#

where the constraint factor K is de_ned by
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K�
" f0¦f1r

1#

" f0¦f1r
2#" f0¦f1r# $

" f0¦f1r#" f0¦f1r
1#

" f 1
0¦1f0f1rg01¦f 1

1r
1g11#%

1¦M¦N
1

"73#

It is instructive to compare "72# with the parallel results for a monolithic power of
material 0\ given by "23#[ To avoid confusion we designate the macroscopic stress in
the monolithic powder by Sij and the macroscopic stress in the composite by SC

ij [ For
the same value of initial relative density\ and same overall co!ordination number for
the composite and monolithic powder\ the stress in the composite SC

ij is K!times the
stress Sij in the monolithic powder[

Typically\ the initial relative density for a composite DC di}ers from the value D9

for the monolithic powder\ see for example Lange et al[ "0880#[ Similarly\ the average
co!ordination number for the composite ZC di}ers from the value Z9 for the mono!
lithic powder[ Assume the composite and the monolithic powder are subjected to the
same strain history Eij"t#[ Then\ a comparison of "72# and "23# reveals that the
macroscopic stress in the composite SC

ij is related to the macroscopic stress Sij in the
monolithic powder by

SC
ij �KCSij "74a#

where

KC 0
DCZC

D9Z9

K "74b#

In summary\ KC is a scalar constraint factor for the e}ect of the particle strength ratio
s1:s0 and the size ratio R1:R0 upon the macroscopic strength of the composite\
compared with the monolithic powder under the same strain history[ In an analogous
manner\ if the macroscopic stress in the composite SC

ij "t# equals that for the monolithic
powder Sij"t#\ then the strain history of the composite EC

ij "t# is related to that of the
monolithic powder Eij"t# by

EC
ij "t# �K−1:"1¦M¦N#

C Eij"t# "75#

by nature of the fact that the macroscopic stress in eqn "23# is homogeneous and of
degree "1¦M¦N#:1 in accumulated strain[

Clearly\ the above approach gives an approximate model of the constraint[ It
assumes that all contacts in a given orientation carry the same indentation force
irrespective of whether the contact is hard or soft[ The fact that all equally oriented
contacts carry the same force neglects the possibility that groups of hard particles
may shield soft particles\ and might induce a percolation limit[ Only more thorough
simulations such as by network models are likely to provide more exact constraint
models[ For example\ from a discrete numerical model for equi!sized soft and hard
spheres\ Jagota and Scherer "0884# predicted percolation at a site fraction of 9[21 for
the case of bonded spheres[

Of particular interest is the result for N�M�9\ which is the rate independent
non!hardening result[ The constraint factor KC\ as de_ned in eqns "73# and "74b#\
simpli_es to
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KC �
DCZC

D9Z9

" f0¦f1r
1#1

" f0¦f1r
2#ð f 1

0¦f0f1"0¦r#¦f 1
1r:kŁ

"76#

Some immediate insight into the form of KC is achieved by specialising to the case of
two populations of equi!sized spheres[ Then\ KC equals K\ and KC is given by

KC �
0

0¦f 1
1 0

0
k

−01
"77#

In the limiting case of rigid spheres of type 1\ k:� and KC �"0−f 1
1#−0[ We note

that the addition of a small volume fraction f1 of rigid particle reinforcement has only
a second order e}ect on the macroscopic stress ] the constraint factor varies with f1
according to KC ¼ 0¦f 1

1 for small f1[ This is consistent with the observation that the
contact sti}ness for a rigid particle against an ideally plastic particle is identical to
that for two ideally plastic particles\ as seen by direct evaluation of eqn "7#[

4[ Concluding discussion

The assumption of a.ne deformation is central to the analysis presented here\ and
its validity is worthy of further study[ We believe that a.ne deformation is an
adequate approximation in the Stage I regime by the following arguments[ The relative
density is su.ciently high for each particle to have a large number of contacting
neighbours "6Ð09#[ Each particle is kinematically constrained by its neighbours so
that particles are unable to roll past each other ] plastic indentation and sliding
occurs at contacts and the load carried by each contact is relatively uniform[ In
their experimental investigation\ Fischmeister et al[ "0867# concluded that non!radial
particle motion "sliding# proceeds well into the plastic densi_cation range of Stage I
during closed die compaction[ This is in sharp contrast with the behaviour of an
elastic\ granular material at low relative density ^ for such a granular solid deformation
is not a.ne[ Rather\ particles tend to roll past each other and the load varies widely
from contact to contact[

A separate issue is the method we have used to introduce the e}ect of inhomogeneity
in particle size and strength[ It was assumed that each junction in a given orientation
carries the same load[ Now\ it is known that a high volume fraction of hard particles
carries most of the load by percolation within a random mixture of hard and soft
particles "Lange et al[\ 0880 ^ Bouvard and Lange\ 0880#[ However\ when the number
fraction of hard particles is modest\ the approach we have used avoids the excessive
weighting of the in~uence of the harder particles as occurs in a purely a.ne method[
For example\ if one set of particles is non!deforming\ the a.ne method predicts that
the entire powder aggregate is non!deforming for any number fraction of rigid
particles[ On the other hand\ the prediction we have given has a _nite strength except
when all the particles in the aggregate are rigid[

In the analysis of composite powders a set of not more than two dissimilar spherical
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particles has been studied[ In reality\ powder particles can be non!spherical and there
is usually a wide range of sizes in a single aggregate[ It remains to be seen how well
our model represents non!spherical particle aggregates without sieving to limit the
range of sizes[ In addition\ in our model\ the material properties of the two families
of particles can di}er only in terms of the strength parameters s0\ and s1\ but otherwise
must have the same hardening and creep exponents[ As was found above\ however\
the shapes of the yield surfaces and creep potentials do not vary much with the
material exponents[ The model includes the important limiting case where one family
of particles is so hard that it is essentially non!deforming[ It is signi_cant because it
includes the case of ceramic inclusions placed in a metal powder to make a particulate
composite[

The model developed here is strictly for the initial stages of compaction "known as
Stage I# where the powder comprises identi_ably separate particles\ with an inter!
penetrating network of porosity[ Consequently\ the model should not be used for the
later stages wherein the porosity closes o} into isolated cavities[ During isostatic
pressing\ this transition begins at about 79) relative density "Helle et al[\ 0874#[
However\ before the density is reached\ the deformation zones for each junction begin
to in~uence each other and the level of constrain is a}ected "Akisanya et al[\ 0883#[
Therefore\ it becomes necessary to modify the Stage I model which is based on non!
interacting deformation zones at each junction[ This is usually done by invoking an
interpolation between Stages I and II "isolated porosity# models occurring over a
relative density level\ say 79Ð89) "Helle et al[\ 0874 ^ Fleck et al[\ 0881a#[ However\
models for Stage II\ equivalent to the one presented here for Stage I\ have not yet
been developed[

The model we have formulated is viscoplastic and makes no allowance for elastic
behaviour[ It is straightforward to deduce from indentation theory that the initial
Hertzian elastic contact between particles is superseded by plastic indentation when
the compact has increased in density by about 0) "Larsson et al[\ 0885#[ Of a more
serious nature is the e}ect of elasticity when the compacted aggregate is unloaded[ The
degree of elastic spring!back and the level of residual stress generated by unloading a
non!uniformly compacted aggregate is sensitive to the details of the elastic response\
and is beyond the scope of the present study[
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