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Abstract

The role of the grain boundary in in~uencing the deformation of a bicrystal is explored using
a rate!dependent crystal formulation of the FleckÐHutchinson strain gradient plasticity theory[
The physical basis of the theory is the elevated strengthening of a slip system due to geo!
metrically necessary dislocations\ associated with spatial gradients of slip[ The theory is
implemented within the _nite element framework and is used to study the deformation of a
bicrystal under in!plane shear loading[ Contrary to classical scale!independent crystal plasticity
theories\ the strain gradient theory predicts that the deformation state depends strongly upon
grain size[ Strain gradient e}ects are pronounced within a narrow layer at the grain boundary
of a bicrystal\ and a signi_cant grain!size dependence of the yield strength is predicted[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

Keywords] Grain boundaries^ Strengthening mechanisms^ Constitutive behaviour^ Crystal plasticity^ Non!
local plasticity

0[ Introduction

Conventional continuum mechanics theories assume that the stress at a material
point depends upon variables such as strain at the same point only[ This local
assumption has long been shown to be adequate when the wavelength of the defor!
mation _eld is much larger than the dominant length scale of the microstructure[
Material behaviour predicted by such a local theory exhibits scale!independence ] no
length scale is present within the constitutive law[ However\ accumulating exper!
imental evidence suggests that a strong size!dependence of mechanical behaviour
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exists at a length scale on the order of microns\ see Fleck and Hutchinson "0886# for
a topical review[ Since early this century when Cosserat and Cosserat "0898# proposed
a coupled stress theory\ various non!local or strain gradient continuum theories
have been proposed to include constitutive length scales in order to model material
deformation more accurately at small scales or in regions of large strain gradient\ see\
for example\ Aifantis "0873#\ Acharya and Bassani "0884#\ Fleck et al[ "0883# and
Fleck and Hutchinson "0882\ 0886#[

There has been a signi_cant amount of work done in developing strain gradient
theories\ but most of them are phenomenological and for homogenised polycrystals[
An exception is the study of Forest and Cailletaud "0884# who employed a couple
stress theory to study strain localisation in single crystals[ Although couple stress type
theories have achieved some success in modelling size e}ects "see the reviews of
William et al[\ 0884 ^ Fleck and Hutchinson\ 0886#\ they consider only the e}ect of
gradient of rotation\ and ignore the gradient of normal strain[ Xia and Hutchinson
"0885# used the couple!stress plasticity theory of Fleck and Hutchinson "0882# in an
attempt to explain the occurrence of cleavage fracture at a mode I crack tip at a
ceramicÐmetal interface[ Conventional plasticity theory is unable to give su.ciently
high levels of stress for cleavage fracture to be expected[ Xia and Hutchinson found
that the traction on the crack plane\ directly ahead of a mode!I crack in the couple!
stress solid\ is only marginally higher than that given by the well!known HRR
_eld for the conventional plastic solid[ Shu and Fleck "0887# also used the FleckÐ
Hutchinson couple!stress plasticity theory to try to predict the size!dependent hard!
ness of a metal polycrystal\ for indents on the length scale of microns[ The predicted
increment in hardness with diminishing indent size falls short of the observed size
e}ect[ It was found in both studies that the deformation _eld is predominantly
dilatational\ rather than rotational in nature[ Since couple!stress theory assumes that
additional hardening arises only from rotation gradients\ no signi_cant size e}ect can
thus be predicted[

Gradients of strain are included in the elasticÐplastic strain gradient theory of Fleck
and Hutchinson "0886#[ It makes use of all second!order gradients of displacements
and _ts within the general framework of Mindlin "0853#[ The phenomenological
version of the Fleck and Hutchinson "0886# theory has been used successfully to
predict enhanced stresses ahead of a crack tip compared with the conventional HRR
solution "Wei and Hutchinson\ 0886# and a signi_cant size e}ect in cone indentation
"Begley and Hutchinson\ 0886#[ As an application of the crystal plasticity version of
the theory\ Smyshlyaev and Fleck "0885# explored the e}ect of grain size on the
strength of a polycrystal[ They considered a deformation theory version of plasticity
with no partitioning between elastic and plastic strains[ A compatible distribution of
strain and strain gradient was obtained throughout the polycrystal[ However\ for a
crystal obeying an elasticÐplastic constitutive law\ the existence of such solutions is
not guaranteed\ as will be explained further below[ We get around this di.culty in
the present paper by introducing additional kinematic freedom into the constitutive
model[

In this paper\ a rate!dependent strain gradient crystal plasticity theory is presented
and used to examine shear deformation within a bicrystal\ including the boundary
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layer adjacent to the grain boundary[ The theory is an extension of the Fleck and
Hutchinson "0886# strain gradient plasticity theory and again leads to a grain size
e}ect on strength[ The paper is organised as follows[

In Section 1\ we follow the general method laid down by Mindlin "0853# to develop
a higher!order theory based on the notion of a representative microvolume[ The
microvolume provides the length scale in the constitutive law[ The precise physical
interpretation of this length scale remains unclear[ Fleck et al[ "0883# assume that the
length scale is set by the free slip distance of dislocations ^ an alternative view is that
the length scale is set by the dislocation cell size[ Hopefully\ this question will be
answered soon by the explicit modelling of discrete dislocations\ using methods
developed by Kubin et al[ "0881# and van der Giessen and Needleman "0884#\ for
example[ In this paper\ {micro| refers to the scale at which discrete dislocations are
considered while {macro| refers to a scale at which the material is viewed as a
continuum with homogenised plastic deformation[

In Section 2\ an elasticÐviscoplastic formulation of the strain gradient crystal
plasticity theory is presented[ It is based on the idea that elevated hardening of
slip resistance arises from geometrically necessary dislocations "Ashby\ 0869#[ An
application of the theory is reported in Section 3 ] we consider the plane!strain
deformation of a lamellar bicrystal\ and explore the e}ects of interface constraints on
the deformation _eld[ An attempt is made to reproduce the well!known HallÐPetch
grain size e}ect[

Throughout this paper\ a bold character denotes a vector or a tensor[ Deformation
is assumed to be in_nitesimal\ and rate!of!change with respect to time is denoted by
an ascent dot[ Repeated lower case Roman indices imply summation over the range
0Ð2[

1[ Continuum description of crystal deformation at microscale and its

homogenisation

The plastic deformation of metals is predominantly by the mechanism of dislocation
glide[ Due to the extremely large number of dislocations in a typical crystal\ it is
practically impossible using currently available computer power to keep track of each
dislocation\ and some sort of averaging procedure is needed to construct a macro!
scopic constitutive law[

Consider a macroscopically homogeneous continuum occupying a macro volume
V[ The macro Cartesian co!ordinate vector X is used to identify a macroscopic
material point[ A small but _nite volume dV surrounding the macroscopic material
point "see Fig[ 0"a## is referred to as a micro!volume[ This micro!volume contains a
{microstructure| in the sense of a dislocation distribution[ A material point within the
micro!volume dV is identi_ed by a micro Cartesian coordinate vector x with its origin
at the centre of dV "see Fig[ 0"b##[

We assume that the volume element dV comprises a crystal with a set of slip
systems[ Plastic straining of the micro!volume is by slip on these slips systems[ The
slip rate for each active system "a# is approximated by a _rst!order Taylor expansion
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Fig[ 0[ "a# A sketch of a microscopic volume dV at a position X in a macroscopic continuum\ "b# the local
co!ordinate system x and slip system vectors in the micro volume dV[

g¾"a#"X\x#¼ g¾¹"a#"X#¦x"a#
S g¹¾"a#

S "X#¦x"a#
T g¹¾"a#

T "X#¦x"a#
Mg¹¾"a#

M"X# "1[0#

in terms of the local co!ordinate x via x"a#
S �s"a#

k xk\ x"a#
T �t"a#

k xk and x"a#
M �m"a#

k xk[ In
"1[0# and in the following\no summation is implied over the upper case labels "S\M\T#[
As shown in Fig[ 0"b#\ the unit vectors "s"a#\ t"a#\m"a## form a right!handed set of
orthogonal directions and refer to the slip direction\ the transverse direction and the
direction normal to the slip plane\ respectively[ The parameter g¾¹"a# is the average slip
rate over dV\ g¹¾"a#

S is the average local gradient of slip in the slip direction\ and so on[
The overall macroscopic plastic strain rate can be expressed as

o¾p
ij"X\x#�s

a

g¾"a#"X\x#m"a#
ij "X# "1[1#

in which

m"a#
ij � "s"a#

i m"a#
j ¦s"a#

j m"a#
i #:1 "1[2#

is the classical Schmid orientation tensor[ Here and elsewhere in this paper\ summation
is taken over all active slip systems "a# of the crystal[ "For a rate!dependent crystal\
summation is over all slip systems[# On the microscale\ we further assume that the
crystal is characterised by the classical framework of plasticity\ i[e[\ plastic dissipation
is by the Cauchy stress working through the plastic strain rate\ and that higher!order
stresses do not exist[ The plastic energy dissipation rate per unit macro!volume is
therefore

Wþ p 0
0

dV gdV

sijo¾
p
ij dv0

0
dV

s
a gdV

t"a#g¾"a# dv "1[3#
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where t"a# 0sijm
"a#
ij is the classical Schmid stress[ Substituting "1[0# and "1[1# into the

above equation and carrying out the volume integration of the dissipation rate\ one
obtains

Wþ p �s¹ ijo¾
p
ij¦t¹ijkh¹¾

p
ijk "1[4#

in which

o¾¹p
ij �s

a

g¾¹"a#m"a#
ij and h¾¹p

ijk �s
a

"g¹¾"a#
S s"a#

k ¦g¹¾"a#
T t"a#

k ¦g¹¾"a#
Mm"a#

k #m"a#
ij "1[5#

are the volume averages of plastic strain rate and the local gradient of plastic strain
rate\ respectively[ The work conjugate quantities for "o¾¹p

ij\ h¾¹p
ijk# over the volume dV are

de_ned by

s¹ ij 0
0

dV gdV

sij dv and t¹ijk 0
0

dV gdV

xksij dv "1[6#

respectively[ It is clear from the above relations that we can interpret s¹ ij as the volume
average of the microscopic Cauchy stress\ and that t¹ijk is the _rst moment of the
Cauchy stress over dV[ Following Mindlin "0853# and Fleck and Hutchinson "0886#\
we shall refer to t¹ijk as a double stress[

Alternatively\ the plastic dissipation rate per unit macro volume can be expressed
in terms of local slips as

Wþ p �s
a

"t¹"a#g¾¹"a#¦QÞ"a#
S g¹¾"a#

S ¦QÞ"a#
T g¹¾"a#

T ¦QÞ"a#
Mg¹¾"a#

M# "1[7#

in which

t¹"a# 0
0

dV gdV

t"a# dv "1[8a#

is the average resolved shear stress and the quantities "QÞ"a#
S \QÞ"a#

T \QÞ"a#
M#\ de_ned by

QÞ"a#
S 0

0
dV gdV

x"a#
S t"a# dv\ QÞ"a#

T 0
0

dV gdV

x"a#
T t"a# dv\ QÞ"a#

M 0
0

dV gdV

x"a#
Mt"a# dv

"1[8b#

are the resolved double stresses[ It is transparent from "1[8b# that the resolved double
stresses are the _rst!order moments of the microscopic Schmid stress[

The total strain rate o¾ij in the microvolume dV is the sum of the elastic and plastic
parts\ and is taken to be a linear distribution within dV[ Thus\ the total work rate in
a unit macro volume can be written as

Wþ 0
0

dV gdV

sijo¾ij dv�s¹ ijo¾¹ij¦t¹ijkh¾¹ijk "1[09#

where
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o¾¹ij �
0

dV gdV

o¾ij dv\ h¾¹ijk �
0

dV gdV

1o¾ij:1xk dv "1[00#

are the average microscopic strain rate and average microscopic strain rate gradient\
respectively[ We make the choice that the average microscopic strain rate o¾¹ij within
dV equals the macroscopic strain rate at the same location X ^ similarly\ the average
microscopic gradient of strain rate h¾¹ijk within dV equals the macroscopic gradient of
strain rate at X[ Thus\

h¾¹ijk 0 1o¾¹ij:1Xk[ "1[01#

Note that the microscopic gradient of slip within dV need not to be the same as the
macroscopic gradient of average slip ] g¾¹"a#

k � 1g¾¹"a#:1Xk and h¾¹p
ijk � 1o¾¹p

ij:1Xk in general[
In classical theories of plasticity\ the higher!order double stress t¹ijk is neglected[

This practice is reasonable when the deformation and stress _eld wavelength is much
larger than the size of the micro volume dV\ but is questionable when the two scales
are comparable\ as discussed in the Introduction[ Only the _rst!order gradient of
strain is kept in the Fleck and Hutchinson "0886# plasticity framework and in the
formulation presented below[ In general\ higher than _rst!order gradients of strain
should also be included in order to model the e}ects of highly non!uniform micro!
scopic detail ^ however\ the inclusion of multiple gradients would make the constitutive
law and numerical implementation impractical[

In order to formulate a complete theory of crystal plasticity with strain gradient
e}ects\ we shall write a virtual work statement in terms of macroscopic quantities[
The internal work rate per unit volume in the X co!ordinate system is given by the
right!hand side of "1[09#[ At each macroscopic point\ the plastic work rate is given by
"1[4# or equivalently by "1[7#[

2[ ElastoÐviscoplastic strain gradient crystal plasticity

In this section\ a rate formulation of a strain gradient crystal theory of plasticity is
proposed[ We shall work solely in terms of the macroscopic co!ordinate system X

and the overbar quantities of the previous section ^ for simplicity of expression\ we
drop the use of the overbar notation hereafter[

2[0[ Kinematics

The velocity gradient L is the spatial gradient of velocity v and is de_ned in
component form as Lij � 1vi:1Xj[ Upon partitioning L into an elastic part and a plastic
part\ i[e[\ L�Le¦Lp\ the plastic part is related to the slip rates on each slip system
by

Lp
ij �s

a

g¾"a#s"a#
i m"a#

j [ "2[0#
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Similarly\ the plastic part of the total strain rate o¾ 0 "L¦LT#:1 "a superscript T
denotes transpose# is related to the slip rates via

o¾ �s
a

g¾"a#m"a# "2[1#

where the components of the tensor m"a# are given by "1[2#[ The third!order strain rate
gradient tensor h¾ is de_ned in component form as h¾ ijk � 1o¾ij:1Xk[ The plastic part of
the strain rate gradient can be expressed as

h¾p �s
a

g"a#
S c"a#

S ¦g¾"a#
T c"a#

T ¦g¾"a#
Mc"a#

M "2[2#

in which the components of the tensors c"a#
S \ c"a#

T and c"a#
M are given by

c"a#
Sijk � s"a#

k m"a#
ij \ c"a#

Tijk � t"a#
k m"a#

ij and c"a#
Mijk �m"a#

k m"a#
ij "2[3#

respectively[ Here g¾"a#
S \ g¾"a#

T and g¾"a#
M are the microscopic slip gradients along the slip\

transverse and slip plane normal directions\ respectively\ as explained in the previous
section[

The plastic work rate per unit volume Wþ p follows from "1[4# and "1[7# as

Wþ p �sijo¾
p
ij¦tijkh¾

p
ijk �s

a

"t"a#g¾"a#¦Q"a#
S g¾"a#

S ¦Q"a#
T g¾"a#

T ¦Q"a#
Mg¾"a#

M# "2[4#

where t"a# is the classical Schmid stress while the resolved double stresses are

Q"a#
S �c"a#

Sijktijk\ Q"a#
M �c"a#

Mijktijk and Q"a#
T �c"a#

Tijktijk[ "2[5#

Following Fleck and Hutchinson "0886#\ the principle of virtual work for the strain
gradient material can be written as

gV

ðsijdo¾ij¦tijkdh¾ ijkŁ dV� gS

ðtidvi¦riDdviŁ dS "2[6#

for an arbitrary velocity increment dv upon neglecting body forces[ Here\ ti and ri are
the traction and double stress traction per unit area of the surface S\ respectively[ The
stress sij and double stress tijk satisfy the equilibrium relation

sij\j−tijk\jk � 9 "2[7#

within V\ and on the surface S are in equilibrium with the tractions according to

ti �nj"sij−tijk\k#¦njnktijk"Dlnl#−Dj"nktijk# "2[8#

and

ri �njnktijk[ "2[09#

In the above equations\ a comma denotes a partial derivative[
Dj" #� "djk−njnk# 1" #:1Xk is a surface!gradient operator and D" #� nk" #:1Xk is the
surface normal!gradient operator[ The i!th component of the unit surface normal is
ni[ Within the FleckÐHutchinson framework of strain gradient plasticity theories\ a
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unique solution is obtainable only when six independent boundary conditions are
prescribed\ i[e[ the three usual traction!velocity boundary conditions of either ti or vi

and the three higher!order boundary conditions of either ri or Dvi[

2[1[ Constitutive law

Before spelling out the constitutive equations for strain gradient crystal plasticity\
we shall give a brief review of the constitutive law for a classical crystal plasticity
theory "see for example\ Peirce et al[\ 0872#[ In a classical rate!dependent formulation
based on the Schmid law\ the slip rate g¾"a# on a slip system "a# is assumed to satisfy

g¾"a#:g¾9 �F"t"a#:`"a## "2[00#

where g¾9 is a reference slip rate\ and F is a dimensionless function of the ratio of
Schmid stress t"a# to a strength parameter `"a#\ termed the slip resistance[ The slip
resistance increases from an initial value `9 according to

¾̀ "a# �s
b

hab=g¾"b#= "2[01#

where hab is the so!called hardening matrix[
In the strain gradient crystal plasticity theory\ it is assumed that the slip resistance

`"a# of a crystallographic system hardens according to

¾̀ "a# �s
b

habg¾
"b#
e "2[02#

where the e}ective slip rate g¾"a#
e is de_ned by

g¾"a#
e � "=g¾"a#=r¦=lSg¾"a#

S =r¦=lTg¾"a#
T =r#0:r[ "2[03#

As discussed by Fleck et al[ "0883#\ g¾"a#
S is the slip gradient in the slip direction and

generates hardening via geometrically necessary edge dislocations^ likewise\ g¾"a#
T is the

slip gradient in the transverse direction and gives rise to hardening by geometrically
necessary screw dislocations[ The exclusion of g¾"a#

M from the hardening relation is
motivated by the fact that a slip gradient in the direction of the slip plane normal
does not lead to any geometrical necessary dislocations and therefore to no elevated
hardening[ In relation "2[03#\ r is a parameter describing the interaction between slip
rate and slip rate gradient\ and in a loose sense it de_nes the interaction between
statistically stored dislocations and geometrically necessary dislocations[ The length
scales lS and lT\ together with lM appearing below\ are introduced for dimensional
consistency\ and have the physical interpretation discussed in the Introduction "Sec!
tion 1#[

The e}ective slip rate is prescribed by a relation of the form of "2[00#\

g¾"a#
e :g¾9 �F"t"a#

e :`"a## "2[04#

in which

t"a#
e � "=t"a#=r¦=−0

S Q"a#
S =r¦=l−0

T Q"a#
T =r#0:r "2[05#
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is an e}ective resolved shear stress[ Recall that t"a# and g¾"a# are the volume averages of
the Schmid stress and slip rate\ respectively\ at the microscopic level[ Furthermore\
g¾"a#

S is the volume average of the local gradient of micro slip rate while its work
conjugate Q"a#

S is related to the local variation of micro Schmid stress^ a similar
statement can be made for the work conjugate pairs "g¾"a#

T \Q"a#
T # and "g¾"a#

M\Q"a#
M#[ We

assume that the slip rate and the local slip rate gradients obey the following pro!
portionality rule of

g¾"a#

t"a#
0

lSg¾
"a#
S

l−0
S Q"a#

S

0
lTg¾

"a#
T

l−0
T Q"a#

T

0
lMg¾"a#

M

l−0
M Q"a#

M

� l"a# "2[06#

where by eqns "2[03# and "2[05#

l"a# 0
g¾"a#

e

t"a#
e

[ "2[07#

Equation "2[06# has been proposed by Smyshlyaev and Fleck "0885#\ but in the
sense that g¾"a#

S 0 1g¾"a#:1XS and so on[ They considered a rigid!plastic crystal\ and
obtained a solution for the distribution of slips and slip gradients[ However\ for an
elastoplastic solid\ constraints of the type g¾"a#

S � 1g¾"a#:1XS cannot be satis_ed sim!
ultaneously with eqn "2[06# for the following reason] these constraints will require a
solution for one unknown quantity l"a# to three independent _rst!order partial di}er!
ential equations of s"a#

k 1"t"a#l"a##:1Xk � l−1
S Q"a#

S l"a#\ etc[ According to the theory of
partial di}erential equations "see Garabedian\ 0875 for example#\ such a solution
generally does not exist[ In the crystal theory considered by Smyshlyaev and Fleck\
t"a# and Q"a#

S are also unknowns and they provide additional degrees of freedom so
that a solution can be found[ In this paper\ we get around this di.culty by interpreting
g¾"a#

S as the average slip gradient rate at the microscopic level\ which is generally di}erent
from the macroscopic slip rate gradient 1g¾"a#:1XS[ This strategy is analogous to the
accepted notion that the total strain in a crystal equals the gradient of the displacement
_eld\ but the plastic strain is generally not derivable from a {plastic| displacement
_eld[

A constitutive law remains to be speci_ed for the evolution of the stress and the
double stress[ On the micro!scale\ the Cauchy stress is related to the elastic strain^
therefore\ the macro stress s\ de_ned as the volume average of the microscopic Cauchy
stress\ is related to the elastic macro strain oe which is the volume average of the
microscopic elastic strain[ The double stress t\ related to the local average variation
of Cauchy stress on the microscale\ is taken to depend on the elastic strain gradient
he\ which is the volume average of the local elastic strain gradient on the microscale[
Therefore\ it is assumed that

s¾ ij �Cijklo¾
e
kl\ and t¾ijk � l1

eCijpqh¾
e
pqk[ "2[08#

Here\ le is an elastic length scale parameter and is related to the size of the micro!
volume dV as discussed in Section 1[ Relations "2[08# and "1[01# imply that
t¾ijk � l1

e 1s¾ ij:1Xk when the deformation is purely elastic[ All the computations reported
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in this paper were obtained using the above elasticity constitutive law[ A more general
elastic constitutive law governing the double stress and the elastic strain gradients
was proposed by Mindlin "0853# and has been subsequently adopted by Fleck and
Hutchinson "0886#\ based on a unique orthogonal decomposition of the strain gradient
tensor h introduced by Smyshlyaev and Fleck "0885#[

2[2[ Speci_cs of the constitutive law

In the following section\ we shall examine the shear deformation of a bicrystal[ For
the sake of simplicity\ we adopt a power!law creep model for the e}ective slip rate]

g¾"a#
e � g¾9 0

t"a#
e

`"a#1
0:m

"2[19#

where the parameter m is the rate!sensitivity index which is generally between zero
"the rate!independent limit# and unity[ Unless stated otherwise\ m is taken to be 9[90
to closely approximate the rate!independent case[ In all the computations conducted\
the reference slip rate g¾9 serves as a scaling parameter to normalise the applied strain
rate[ The hardening matrix is given by

hab �hdab¦qh"0−dab# "2[10#

with the constant q�0[3 as a latent hardening index and dab is the Kronecker delta
symbol[ In general\ the self!hardening modulus h can be taken to be a function of the
e}ective slip accumulated over the whole loading history\ ge �Sa Ð g¾"a#

e dt[ In this paper\
we assume linear hardening and set h equal to a constant value h9[ The initial slip
resistance is taken to be the same value `9 for all slip systems and\ in the majority of
the numerical calculations\ h9 is taken to be 09 times `9[ The elastic modulus Cijkl is
taken to be isotropic\ with Young|s modulus E�092×`9 and Poisson|s ratio n�9[14[
The corresponding shear modulus is G�399 `9[ All constitutive length scales\ le\ lS\
lM and lT\ are assumed to equal a constant value l[

The above rate!dependent strain gradient crystal theory has been implemented
within the _nite element method framework\ for the case of crystals undergoing in!
plane deformation[ The details of the _nite element implementation are presented in
Appendix A and the tangent modulus scheme is summarised in Appendix B[

3[ Application] Shear of a bicrystal

As an application of the strain gradient crystal plasticity theory\ a bicrystal under!
going in!plane shear deformation is studied[ As shown schematically in Fig[ 1\ the
bicrystal consists of two single crystal strips in_nitely long in the X0! and X2!directions
and of thickness D in the X1!direction[ It is imagined that the two grains are {cut|
from the same single crystal and are perfectly bonded "no relative displacements# with
a mismatch angle in the lattice orientation with respect to the Cartesian co!ordinate
system[ For the case of uniform slip on a single system of the single crystal\ the slip
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Fig[ 1[ The geometry and notation of a lamellar bicrystal under plane!strain shear deformation[ A uniform
velocity v� in the X0!direction is prescribed along the top surface[ s"0# and s"1# are unit vectors in the slip
directions of the two planar slip systems at any point[

resistance increases linearly with shear strain\ with a hardening modulus h9 and an
initial strength `9[ A Planar!Double!Slip model is considered in this paper "see for
example Rashid and Nemat!Nasser\ 0881#] each grain has two slip systems\ and the
slip directions and slip plane normals lie in the "X0\X1# plane[ It is well known that
the planar double slip model can mimic the actual plane!strain deformation in a "009#
type plane of a face!centred!cubic "FCC# crystal[ The two e}ective slip systems consist
of slip directions and slip plane normals lying in the same "009# plane\ and give the
same overall plastic strain as the 01 slip systems in the FCC crystal[ In this paper\ we
assume that the slip directions in grain 0 are aligned at −29 and 29> from the X1!axis
while those in grain 1 are aligned at angles of −29>¦Du and 29>¦Du "see Fig[ 1#[

On the bottom surface of the bicrystal the displacement and the higher order
tractions vanish\ u0 � u1 0 9 and r0 � r1 0 9[ On the top face\ the higher order trac!
tions again vanish\ r0 � r1 0 9 but a uniform velocity is prescribed along the X0!
direction\ u¾0 � v�\ corresponding to an average shear strain rate of o¹¾01 � v�:3D[ Out!
of!plane deformation is constrained\ u2 0 9[

The choice of higher!order boundary conditions at the interface X1 �9 plays an
important role in determining the deformation state of the bicrystal[ If one assumes
that the interface places no additional constraint on the deformation _eld except
requiring continuity of displacement and traction ti\ then the higher!order traction ri

vanishes on the interface and the strain gradient theory gives identical results to those
of its classical scale!independent counterpart[ The deformation state thus predicted is
uniform in each grain but discontinuous across the boundary^ also\ no size!dependence
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is predicted for the bicrystal yield strength[ If\ on the other hand\ one assumes that the
interface imposes an additional constraint that the normal gradient of displacement is
continuous across the grain boundary\ then the predicted deformation exhibits a
strong grain size!dependence\ as detailed below[ The rationale of this constraint can
only be veri_ed or refuted by well!controlled experiments through which detailed
characterisation of deformation "e[g[\ lattice rotation angle# can be made in a region
surrounding the interface and spanning a few tens of microns[

3[0[ The nature of the solution

The general structure of the solution is as follows[ The solution is one!dimensional
in nature] all deformation variables depend on X1 only[ In grain 0 symmetry of the
slip orientations dictates the slips are equal\ g"0# � g"1#[ In grain 1\ the lattice mismatch
Du generally implies that g"0# � g"1#[ In both grains\ the non!vanishing components of
strain and strain gradient are o01 "0o10#\ o11\ h011 "0h101# and h111[ The tensile stain
component o11 and its gradient h111 arise from the plastic anisotropy associated with
the non!symmetric slips in grain 1 and from the strain gradient e}ect[ At the interface
we assume continuity of displacement u0 and of displacement gradient 1u0:1X1[ This
implies that the total shear strain o01 is continuous at the interface\ but the slips and
lattice rotation can jump in value[ Continuity of traction t0 and of higher!order
traction r0 is also enforced at the interface[

A simple 1!D _nite element mesh of forty nine!noded quadrilateral QU23L3
elements "see Appendix A for details about the elements# is used for each grain[
Periodic boundary conditions are applied to enforce uniformity of deformation along
the X0!direction] for any two nodes equidistant from the interface the values of the
nodal degrees of freedom are identical\ and the nodal forces are equal in magnitude
but opposite in sign[

3[1[ Deformation state in lar`e `rains

In this subsection\ we investigate the deformation of a thick bicrystal with
D:l�099[ We present in Fig[ 2"a# the distribution of total strain o01 � "1u0:1X1#:1 for
the case Du�29> and r�0 ðrecall eqn "2[03#Ł[ The largest di}erence between the
Schmid factors and the plastic deformation in the two grains is attained at Du�29>[
The maximum Schmid factor in the bicrystal is m01 �9[4\ giving a shear yield strain
of the solid `9:"3m01G#�9[014)^ therefore\ the strains shown in Fig[ 2"a# are deep in
the plastic range[ It is clear from the _gure that the strain is continuous at the grain
boundary but has a non!uniform distribution within a narrow boundary layer on
each side of the grain boundary[ Away from the grain boundary\ the strain approaches
the conventional crystal theory prediction[ Similar boundary layers of slip are evident
from the distribution of slip g on the second slip system\ see Fig[ 2"b#[ We do not
display results for the _rst slip system as the slip on this system is negligible within
grain 1[

An important measure of the crystal deformation is the rotation of the lattice[ The
lattice rotation angle v is de_ned as the total material rotation minus the material
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Fig[ 2[ "a# The distribution of total shear strain o01 along the X1!direction\ normal to the grain boundary^
"b# the slip g on the second slip system in both strains\ as a function of X1[ Du � 29>\ D:l � 099 and r � 0[
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rotation associated with plastic deformation[ On adopting the sign convention of
clockwise positive\ v can be written as

v� o01−s
a

g"a#:1 "3[0#

and is plotted in Fig[ 3 for Du�29>[ In the calculations\ the lattice vectors do not
change with time[ The e}ect of _nite deformation has not been explored but is not
expected to change the overall distribution of v[ The non!linear interaction between
strain hardening and strain gradient hardening is addressed by giving results for both
r�0 and r�1] the e}ect of the magnitude of r on lattice rotation is minor[ The
distribution of lattice rotation also shows the existence of a boundary layer adjacent
to the grain boundary^ remote from the grain boundary v asymptotes to the prediction
of the classical theory[ The jump in lattice rotation v at the interface is small compared
to the classical solution\ but remains _nite by the following argument[ Grain 1 has a
larger plastic rotation Sa g"a#:1 than grain 0[ At the interface the strain component o01

is continuous[ Thus\ by "3[0#\ the lattice rotation at the interface is less in grain 1 than
in grain 0[

It is instructive to explore the sensitivity of the boundary layer width to the lattice
misorientation Du[ We take as a measure of the boundary layer width the distance

Fig[ 3[ Lattice rotation angle v as a function of distance X1 from the grain boundary\ for Du � 29>[
D:l � 099[
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from the interface over which the lattice rotation deviates by more than 9[1> from the
remote value "given by the classical solution\ neglecting gradient e}ects#[ The widths
w0 and w1 of the boundary layer in grains 0 and 1\ respectively\ are plotted in Fig[ 4
vs Du\ at an average strain o¹01 of 2)\ with r�0[ The total width w�w0¦w1 is
included in the _gure[ The symbols denote individual calculations[ The widths as
functions of Du are mirror symmetric about Du�89> and have a periodicity of
Du�079>[

The dependence of the widths on the mismatch angle is strong[ A peak in all widths
is attained at Du�29>[ This geometric orientation gives a strong gradient e}ect by
the following argument[ At this mismatch angle the plastic deformation in grain 1 is
predominantly by slip along slip system "1# whose glide direction is aligned with the
X1 direction[ This slip system has a Schmid factor of −9[4 and gives rise to a negative
plastic rotation "i[e[\ in the anti!clockwise direction# and thereby to a large lattice
rotation v "see Fig[ 3 for the value of v#[ Continuity of strain o01 across the interface
leads to a large higher!order stress at the interface "r0 �0[22l`9# and to a thick
boundary layer within both grains[

In contrast\ for Du�59>\ the plastic deformation in grain 1 is by slip on slip system
"0#\ with its slip direction aligned along the direction of remote shear X0 and with a
Schmid factor of 9[4^ the grain has a positive plastic spin and by "3[0# a small lattice

Fig[ 4[ The boundary layer width at 2) average shear strain o¹01 as a function of the mismatch angle Du[
The distribution has mirror symmetry about Du � 89> and a period of Du � 079>[ D:l � 099[ r � 0[
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rotation of 9[98Ð9[04>[ Although higher!order stress exists at the interface "r0 �0[15
l`9#\ the lattice rotation v in grain 1 is smaller than the chosen cut!o} value of 9[1>
and the boundary layer width w1 is taken to vanish[ Grain 0 has a larger lattice
rotation 9[24Ð1[50> and the higher!order stress at the interface gives rise to a wide
boundary layer[

Figure 4 suggests a systematic set of bicrystal experiments whereby the boundary
layer thickness is measured as a function of lattice mismatch angle[ Recently\ it has
become practical to measure lattice rotation adjacent to a grain boundary using the
Orientation Imaging Microscope "Adams et al[\ 0882#[

It is interesting to compare the micro slip gradient g"1#
S on slip system "1# with the

corresponding macroscopic slip gradient g"1#
\S �s"1#

1 1g"1#:1X1\ for the case Du�29> and
r�0[ The values of the two slip gradients are plotted vs X1:l in Fig[ 5 at three values
of average shear strain o¹01[ The corresponding slip distribution has already been shown
in Fig[ 2"b#[ In general\ the two gradients agree well and the di}erence diminishes as
o¹01 increases[ For example at o¹01 �2)\ g"1#

S is about 2) smaller than g"1#
\S in grain 0 at

the interface while in grain 1\ the di}erence is about 09) at the interface\ 4) at the
next mesh point and less than 0) at all other points[ The generally good agreement
is not surprising[ Recall that the total strain gradient hijk � 1oij:1Xk[ As deformation
proceeds\ the plastic strain op

ij and plastic strain gradient hp
ijk increasingly dominate the

elastic contribution to the strain and strain gradient\ respectively\ and hp
ijk converges

Fig[ 5[ The micro slip gradient gS and the macro slip gradient g\S as a function of distance X1 from the grain
boundary\ for D:l � 099[ Du � 29> and r � 0[ The gradients are associated with the second slip system[
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to 1op
ij:1Xk[ In grain 1\ only slip system "1# is active and its orientation renders

g"1#
M � g"1#

\M � 9\ thereby hp
011 �m"1#

01s
"1#
1 g"1#

S and op
01\1 �m"1#

01s
"1#
1 g"1#

\S [ Thus\ g"1#
S converges to

g"1#
\S \ as shown in the _gure[ In grain 0\ the slips on the two systems are equal\ with

hp
011 �1m"1#

01s"1#
1g

"1#
S and op

01\1 � 1m"1#
01s

"1#
1 g"1#

\S [ Therefore\ g"1#
S and g"1#

\S converge as hp
011

converges to op
01\1[ The relatively poor agreement in grain 1 near the interface is due

to the numerical di}erentiation used to estimate g"1#
\S near the boundary[

3[2[ Deformation state in small `rains

As reported above\ for bicrystals with a large grain size DŁ l\ the gradient theory
predicts a deformation _eld identical to that of the classical crystal theory except in a
narrow boundary layer adjacent to the grain boundary[ It is also of interest to compare
the two theories for the case of D comparable in value to l[ Recall that the classical
theory lacks a constitutive length scale\ so the predicted deformation state is inde!
pendent of the magnitude of D[ We shall demonstrate that the strain gradient theory
predicts signi_cant change in deformation state with diminishing grain size[ Consider
a bicrystal with a grain size D� l[ The lattice rotation angle v is plotted against X1:l
in Fig[ 6\ for Du�29> and for selected values of o¹01 and r[ The deformation is non!
uniform throughout the bicrystal\ and the lattice rotation is dramatically di}erent
from that predicted by the classical theory\ as given by the asymptotes in Fig[ 3[

Fig[ 6[ Lattice rotation angle v as a function of distance X1 from the grain boundary for D:l � 0[ Du � 29>[



J[Y[ Shu\ N[A[ Fleck:Journal of the Mechanics and Physics of Solids 36 "0888# 186Ð213203

Overall\ the gradient theory smooths out the di}erence in lattice rotation of the two
grains\ except in the vicinity of the grain boundary[ There is a cross!over of the lattice
rotation\ in a region of a width of about 9[1 l adjacent to the interface\ for the reason
already discussed in relation to Fig[ 3[

3[3[ Grain!size dependence of bicrystal yield stren`th

It is well!known that the yield strength\ denoted by tY\ of a polycrystal obeys a
HallÐPetch relation "Hall\ 0840^ Petch\ 0842#]

tY ¼ t9¦kD−0:1 "3[1#

where t9 and k are material constants\ and D is the average grain size[ Conventional
crystal plasticity theory is unable to predict the HallÐPetch e}ect[ The grain size!
dependence of the overall yield strength of the bicrystal is studied using the current
strain gradient crystal theory[ In results reported below\ unless otherwise stated\ the
{yield strength| tY is chosen to be the surface traction per unit area at 9[0) plastic
average strain o¹p

01[ We report below predictions of the grain size e}ect as a function
of lattice orientation mismatch Du and hardening modulus h9[

3[4[ "i# Effect of orientation mismatch an`le

Figure 7 shows the relation between the surface traction per unit area t0 and the
average shear strain for various relative grain size D:l[ In the _gure\ two values of the

Fig[ 7[ The surface traction t0 vs the average strain o¹01 for various grain sizes D:l[
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mismatch angle are chosen] Du�19> and Du�29>[ There is a considerable size e}ect\
the magnitude of which is rather insensitive to the choice of the o}set yield strain[ It
is further seen from Fig[ 7 that the coupling between the slip and slip gradients
characterised by the index r has a considerable e}ect on the grain size dependence[
Generally\ a linear coupling "r�0# leads to a smaller grain size e}ect on the yield
strength than quadratic coupling "r�1#[ The 9[0) o}set yield strength tY is plotted
against grain size D in Fig[ 8 for various lattice mismatches[ The grain size e}ect is
strong for 9[2³ "l:D#0:1 ³ 0\ that is for l³D³ 09 l[

The classical theory prediction of the yield strength t9 is plotted against the mis!
match angle Du in Fig[ 09"a#[ The calculated strength as a function of Du is mirror!
symmetric about Du�89> and has a periodicity of Du�079>[ An identical shear
yield strength is predicted at mismatch angles of 29 and 59> for the following reason[
In grain 1 the Schmid factors for the two slip systems have identical absolute values
at Du�29> and at Du�59> and hence the bicrystal undergoes the same strain state[

Now return to the predictions of the strain gradient theory[ The elevation in ~ow
strength associated with the grain size e}ect "tY−t9# is plotted against the mismatch
angle Du in Fig[ 09"b#\ for l:D�0[ The solid lines correspond to the strength elevation
at 9[0) o}set strain while the dashed lines are for 0) o}set strain[ The calculated
strength is again mirror!symmetric about Du�89> and has a periodicity Du�079>[
At Du�9\ 89 and 079>\ there is no mismatch in Schmid factors between grains\ no

Fig[ 8[ The e}ect of mismatch angle on the grain size dependence of yield strength of the bicrystal[
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Fig[ 09[ "a# The classical theory prediction of the bicrystal yield strength t9 as a function of the mismatch
angle Du^ "b# tY−t9 as a function of the mismatch angle Du[ tY is calculated using the strain gradient theory
for l:D � 0[
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strain gradients and therefore no grain size dependence[ For other mismatch angles\
the strain gradient crystal formulation suggests a signi_cant grain size e}ect[

It is further noted from Figs[ 09"a# and "b# that the strain gradient theory predicts
a slightly lower yield strength tY for Du�29> than for Du�59>[ Yet\ the e}ective
shear stress on the dominant slip system is greater for Du�29> than for Du�59>]
this can be traced back to the di}erent roles that gS and gM play in the hardening
relation "2[03#[ At Du�29>\ slip system "1# in grain 1 is dominant and the _nite slip
gradient g"1#

S contributes to the hardening\ while at Du�59> the slip system "0# is
dominant in grain 1 and has a slip gradient g"0#

M which does not lead to elevated
hardening[ Thus\ the e}ective resolved stress t"1#

e at Du�29> is larger than t"0#
e at

Du�59>[
It is clear from Fig[ 09"b# that although the precise value of "tY−t9# at 0) o}set is

changed by a moderate amount from the corresponding value at 9[0) o}set\ the
grain size e}ect is generally maintained deep into plastic range[ This indicates that
the grain size e}ect is not intrinsically an elasticÐplastic e}ect[

3[5[ "ii# Effect of the self!hardenin` modulus

To study the e}ect of the self!hardening modulus h9 on the grain size e}ect\
computations have been carried out for various h9\ at a _xed mismatch angle Du�29>[
The yield strength tY is plotted in Fig[ 00"a# and the strength elevation "tY−t9# is
plotted in Fig[ 00"b# vs the inverse square root of the relative grain size "D:l#−0:1[ As
expected\ the elevation of h9 leads to a signi_cant increase in yield strength^ however\
the grain size e}ect in strength has only a minor dependence on the precise choice of
hardening modulus[ This is fully consistent with the approach we have adopted] we
have sought to give an underlying micromechanical basis to the grain size e}ect on
yield strength\ rather than predict a grain size e}ect based on strain hardening rate[

4[ Concluding remarks

Based on the physical argument of elevated hardening due to geometrically necess!
ary dislocations\ an elasticÐviscoplastic strain gradient crystal plasticity formulation
is presented[ It _ts within the FleckÐHutchinson strain gradient plasticity theory
framework and contains constitutive length scales[ The formulation is applied to
study the plane strain deformation of a lamellar bicrystal[ The choice of interface
constraints plays a critical role in a}ecting the predictions[ The weak constraint
of displacement continuity gives scale!independent predictions identical to those of
classical theories\ while the stronger constraint of continuous displacement and con!
tinuous total strain leads to a grain size dependence of strength[ The classical theory
and the gradient theory give almost identical predictions away from the interface but
di}er signi_cantly within a boundary layer adjacent to the interface[
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Fig[ 00[ The e}ect of the self!hardening modulus on the grain size dependence of the bicrystal yield strength[
Du � 29>[ "a# tY vs "D:l#−0:1^ "b# tY−t9 vs "D:l#−0:1[
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Appendix A] Finite element implementation of strain gradient crystal theory

The Fleck and Hutchinson "0886# framework of strain gradient plasticity has been
implemented in a _nite element method code[ The details of the implementation are
documented in Shu et al[ "0887#[ Only the main implementation details are repeated
here[ As described in Section 2\ the principle of virtual work for the strain gradient
theory involves second!order spatial derivatives of displacement or velocity[ C0!con!
tinuity of the shape functions for displacement interpolation is necessary if a pure
displacement!based formulation of the _nite element method is used[ There is a
reliable rectangular C0 continuous element "Zienkiewicz and Taylor\ 0883# but its
shape is a strong limitation[ Experimentation with Specht|s "0874# triangular plate
bending element is not encouraging "Xia and Hutchinson\ 0885#[ Shu et al[ "0887#
have therefore developed a number of elements based on classical C9 continuous
shape functions by making use of appropriate Lagrange multipliers[

To proceed\ let us introduce a second!order tensor h which will be forced by a
Lagrange multiplier to approximate the displacement gradient within each element[
Then\ the strain gradient is approximated by the third!order tensor f¼ \ de_ned by

h¼ ijk 0
0
1 0

1fij

1Xk

¦
1fji

1Xk1 [ "A[0#

For a stress _eld s and double stress _eld t satisfying the equilibrium relations "2[7#Ð
"2[09#\ it follows from the divergence theorem that

gV

ðsijdoij¦tijkdh¼ ijk¦lij"do¼ij−doij#Ł dV� gs

ðtidui¦njridfjiŁ dS

¦gs

"nktijk−njri#"dfji−dui\j# dS "A[1#

in which lij 0 tijk\k and o¼ij �"fij¦fji#:1[ Here\ ti is the surface traction per unit area
and ri the surface double stress traction per unit area\ as de_ned in eqns "2[8# and
"2[09#\ respectively[ If fij were strictly subjected to the constraint

fij � uj\i "A[2#

throughout the specimen\ then o¼ij would become the strain oij\ h¼ ijk would become the
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strain gradient hijk 0 1oij:1Xk and "A[1# would degenerate to the principle of virtual
work eqn "2[6#[ However\ strict enforcement of "A[2# would demand elements of C0!
continuity[

To use C9!continuous shape functions\ the kinematic constraint "A[2# is enforced
in the following weighted!residual manner via the Lagrange multipliers lij]

gv

"fji−ui\j#dlij dV� 9[ "A[3#

For this reason\ fij is referred to as a relaxed displacement gradient and o¼ij as a
relaxed strain[ By satisfying the constraint "A[2# strictly over the surface where the
displacement gradient is prescribed\ "A[1# can be rewritten as

gV

ðsijdoij¦tijkdh¼ ijk¦lij"do¼ij−doij#Ł dV¼ gs

ðtidui¦njridfjiŁ dS "A[4#

without introducing a signi_cant error[ Relations "A[3# and "A[4# constitute the basis
of the _nite element implementation of the strain gradient theory\ using displacement
and the relaxed displacement derivatives as independent nodal degrees of freedom[
Since only _rst order derivatives of nodal degrees of freedom are involved\ C9!
continuous interpolation of the nodal quantities are su.cient to ensure convergence
of the _nite element procedure with suitable mesh re_nement[ For a crystal undergoing
small straining\ the modi_cations of "A[3# and "A[4# to rate form is straightforward[

Shu et al[ "0887# developed a series of C9!elements and conducted a comprehensive
comparison of their relative performance[ The computations reported in this paper
made use of the optimal elements\ designated QU23L3[ These elements are nine!
noded isoparametric quadrilaterals[ There are two degrees!of!freedom "u0\ u1# at each
node^ in addition\ at each corner node\ there are four additional degrees!of!freedom
"f00\f10\f01\f11#[ The displacement _eld is interpolated using standard C9!quadratic
shape functions while the relaxed displacement derivatives are interpolated using
conventional bilinear shape functions[ The total number of degrees!of!freedom per
element is 23[ The four Lagrangian multipliers lij are assumed to be uniform within
each element[ A full integration scheme is used] the stress and the double stress terms
in the principle of virtual work are integrated by 2×2 Gauss quadrature while the
Lagrangian multiplier terms are integrated using 1×1 quadrature[

Appendix B] Rate!tangent modulus for the strain gradient crystal

In this appendix\ the {rate!tangent modulus| scheme of Peirce et al[ "0873# is used
to derive an elasticÐplastic forward gradient modulus relating the increments of stress
and double stress to those of strain and strain gradient[ The general three!dimensional
case is considered[

Recall that the e}ective slip rate is given by the power!law creep relation "2[19#[
Following Peirce et al[ "0873#\ the increment of the e}ective slip on a slip system "a#
over a time step Dt is approximated by
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Dg"a#
e �Dt""0−q#g¾"a#

e =t¦qg¾"a#
e =t¦Dt# "B[0#

where a subscript after a vertical bar is used to denote the time at which the e}ective
slip rate is evaluated[ The parameter q ranges from 9Ð0\ with q�9 corresponding to
a simple forward Euler time integration scheme while q�0 represents backward
integration[ For simplicity of notation\ we shall henceforth omit the use of a subscript
t following a vertical bar in denoting any quantities evaluated at time t[ A _rst order
Taylor expansion about the current state is used to approximate the e}ective slip rate
at t¦Dt]

g¾"a#
e =t¦Dt � g¾"a#

e ¦g¾"a#
e

0
m 0

Dt"a#
e

t"a#
e

−
D`"a#

`"a# 1 [ "B[1#

The increment of slip resistance D`"a# follows from the hardening law "2[02# as

D`"a# �s
b

habDg"b#
e \ "B[2#

Substitution of "B[1# and "B[2# into "B[0# leads to

s
b $dab¦j"a# hab

`"a#%Dg"b#
e � g¾"a#

e Dt¦j"a#Dt"a#
e "B[3#

in which

j"a# 0q
g¾"a#

e Dt

mt"a#
e

[ "B[4#

In order to relate the increment of e}ective slip to the strain and strain gradient
increment\ we _rst need to determine the e}ective resolved shear stress increment
Dt"a#

e in "B[3#[
Upon di}erentiating eqn "2[05#\ an increment in the e}ective resolved shear stress

is related to the increments of the resolved shear stress and double stresses by

Dt"a#
e �B"a#"Dt"a#\DQ"a#

S \DQ"a#
T #T "B[5#

in which the components of the vector B"a# are

B"a#
0 � sgn "t"a## b

t"a#

t"a#
e b

r−0

\ B"a#
1 � sgn "l−0

S Q"a#
S # b

l−0
S Q"a#

S

t"a#
e b

r−0

\

B"a#
2 � sgn "l−0

T Q"a#
T # b

l−0
T Q"a#

T

t"a#
e b

r−0

[ "B[6#

Here\ a superscript T denotes transpose[ By virtue of eqns "2[4# and "2[5#\ "B[5# can
be rewritten as
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Dt"a#
e �B"a#

0 m"a# ]Ds¦"B"a#
1 c"a#

S ¦B"a#
2 c"a#

T # *Dt "B[7#

or\ in vector form\ as

Dt"a#
e �P	"a#T DS "B[8#

where the vector S consists of the six components of stress tensor s and the 07
components of the double stress tensor t[ The components of the vector P	"a# can be
easily constructed[ It remains to express DS in terms of Dg"a#

e before substituting "B[8#
into "B[3#[

The proportionality rule "2[02# and "2[03# dictate that the slip and micro slip
gradient increments after Dt are given by

"Dg"a#\Dg"a#
S \Dg"a#

T \Dg"a#
M#T �A"a#Dg"a#

e "B[09#

where the components of the vector A"a# are

A"a#
0 0

t"a#

t"a#
e

\ A"a#
1 0

Q"a#
S

l1
St

"a#
e

\ A"a#
2 �

Q"a#
T

l1
Tt

"a#
e

\ A"a#
3 �

q"a#
M

l1
Mt"a#

e

[ "B[00#

The overall plastic strain increment is given by

Dop �s
a

A"a#
0 m"a#Dg"a#

e "B[01#

and the plastic strain gradient increment is given by

Dhp �s
a

"A"a#
1 c"a#

S ¦A"a#
2 c"a#

T ¦A"a#
3 c"a#

M#Dg"a#
e [ "B[02#

For later convenience of notation\ "B[01# and "B[02# are combined in vector form as

DEp �s
a

P"a#Dg"a#
e "B[03#

where the vector DE contains all the components of strain and strain gradient
increments[ The vector P"a# can be constructed in a straightforward fashion and is not
listed here[ The linear elastic constitutive law "2[08# is rewritten in vector form\ upon
making use of "B[03#\ to obtain

DS�C	"DE−DEp#�C	DE−s
a

C	P"a#Dg"a#
e [ "B[04#

Here\ C	 denotes the overall elastic modulus matrix and can be constructed from
"2[08#[

Upon making use of "B[04#\ we can now proceed to substitute "B[8# into "B[3# and
thereby eliminate Dt"a#

e to get

s
b

NabDg"b#
e � g¾"a#

e Dt¦j"a#P	"a#TC	DE "B[05#

in which
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Nab � dab¦j"a# 0
hab

`"a#
¦

P	"a#TC	P"b#

t"a#
e 1 "B[06#

eqn "B[05# is inverted to obtain the e}ective slip increments

Dg"a#
e �s

b

N−0
ab ðg¾"b#

e Dt¦j"b#P	"b#TC	DEŁ "B[07#

where the superscript −0 denotes the inverse[ Finally\ upon substituting "B[07# into
"B[04#\ one obtains the following governing relation between stress and strain
increments]

DS� 6C	−s
a

s
b

j"b#C	P"a#N−0
ab P	"b#TC	7DE−s

a

s
b

C	P"a#N−0
ab g¾"b#

e Dt[ "B[08#

The _rst term in brackets on the right!hand side of "B[08# is the rate tangent modulus[
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