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Abstract—Analyses of cyclic loading of a plane strain mode I crack under small-scale yielding are carried
out using discrete dislocation dynamics. The formulation is the same as used to analyze crack growth under
monotonic loading conditions, differing only in the remote stress intensity factor being a cyclic function of
time. The dislocations are all of edge character and are modeled as line singularities in an elastic solid.
The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and
dislocation annihilation are incorporated into the formulation through a set of constitutive rules. Either revers-
ible or irreversible relations are specified between the opening traction and the displacement jump across a
cohesive surface ahead of the initial crack tip in order to simulate cyclic loading as could occur in a vacuum
or in an oxidizing environment, respectively. In accord with experimental data we find that the fatigue thres-
hold �Kth is weakly dependent on the load ratioR when the reversible cohesive surface is employed. This
intrinsic dependence of the threshold onR is an outcome of source limited plasticity at lowR values and
plastic shakedown at higherR values. On the other hand,�Kth is seen to decrease approximately linearly
with increasingR followed by a plateau when the irreversible cohesive law is used. Our simulations show
that in this case the fatigue threshold is dominated by crack closure at low values ofR. Calculations illustrating
the effects of obstacle density, tensile overloads and slip geometry on cyclic crack growth behavior are also
presented. 2001 Published by Elsevier Science Ltd on behalf of Acta Materialia Inc.
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1. INTRODUCTION

The essence of fatigue crack growth is that it occurs
even when the driving force for crack growth is much
smaller than what is needed for the same crack to
grow under monotonic loading conditions. Amounts
of crack growth less than an atomic spacing per load-
ing cycle can lead to catastrophic failure over design
lifetimes. Therefore, the conditions, if any, where
crack growth under cyclic loading is precluded are of
considerable interest. Operationally, this fatigue
threshold is typically defined in terms of a maximum
amount of crack growth per cycle, which is often
taken as 10�8 mm per cycle [1]. Experimentally, the
fatigue threshold is known to be sensitive to the
material microstructure, the load history and the
environment [1, 2].

Experiments to obtain the dependence of crack
growth on these various parameters are difficult to
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carry out and time consuming because of the large
number of cycles required for measurable amounts of
crack growth to occur. Therefore, predictive models
of the fatigue threshold have a potentially important
role to play.

At the low driving force values in the near-thres-
hold regime, plastic flow is confined to relatively
small volumes. As a consequence, for crystalline met-
als, the discreteness of dislocations comes into play.
The literature on dislocation models for fatigue crack
growth has recently been reviewed by Riemelmoser
et al. [3]. In particular, discrete dislocation models of
threshold conditions for fatigue crack growth have
been proposed by Pippan and co-workers [4–6] and
Wilkinson et al. [7]. In these studies, dislocations
nucleate from the crack tip (or from a single source
near the crack tip). The dislocations then glide on
specified slip planes emanating from the near crack
tip region. Such models are meant to represent the
deformation-controlled fatigue crack growth mech-
anism proposed by Laird and Smith [8] and Neumann
[9]. By contrast, in our approach the material model
is also applicable when there is no crack, see, for
example, Ref. [10], and the fracture properties are
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independent of whether the loading is monotonic or
cyclic.

We analyze near-threshold fatigue crack growth in
metal single crystals, where plastic flow arises from
the collective motion of large numbers of dislo-
cations. As in previous monotonic loading studies by
Cleveringa et al. [11] and Van der Giessen et al. [12],
full boundary value problem solutions are obtained
for small-scale yielding of a mode I crack in plane
strain. The loading is imposed by prescribing dis-
placements corresponding to the isotropic, linear elas-
tic mode I singular fields remote from the crack tip.
The only difference from the problems in Refs [11,
12] is that the remote stress intensity factor is taken
to be a cyclic function of time varying between a
specified Kmin and Kmax. Plane strain conditions are
taken to prevail and the dislocations, which are rep-
resented as line singularities in an elastic solid, are
all of edge character. The planar model crystal has
three slip systems, is initially free of mobile dislo-
cations and the locations of dislocation sources and
obstacles are specified in a process region surround-
ing the initial crack tip, with no special dislocation
nucleation from the crack tip.

The solution of the boundary value problem for the
dislocated solid follows the approach of Van der
Giessen and Needleman [13] and Cleveringa et al.
[10]. In this approach, the long range interactions
between dislocations are accounted for through the
continuum elasticity fields. Short range dislocation
interactions are not represented by elasticity theory
and are incorporated into the formulation through a
set of constitutive rules, which are based on those
proposed by Kubin et al. [14]. In particular, drag dur-
ing dislocation motion, interactions with obstacles,
and dislocation nucleation and annihilation are
accounted for.

The fracture properties of the material are embed-
ded in a cohesive surface constitutive relation [15],
so that crack initiation and crack growth emerge as
natural outcomes of the boundary value problem sol-
ution. A reversible cohesive constitutive relation is
used to model conditions as could occur in a vacuum
while an irreversible relation is used to represent an
oxidizing environment. The cohesive surface model
permits both normal and sliding modes of opening
(although under the mode I conditions analyzed here
only the opening mode is active) and crack growth is
stress as well as deformation driven. In contrast, a
solely deformation-controlled crack growth mech-
anism as used in Refs [4–7] does not account for the
normal separation of the newly formed crack surface
which gives rise to an open crack. Furthermore,
cleavage is known to be a fatigue crack propagation
mechanism, at least in intermetallics (e.g. Refs [16,
17]) and in nickel-based superalloys (e.g. Ref. [18]).

Cleveringa et al. [11] found the monotonic fracture
behavior to depend sensitively on the interplay
between the cohesive and plastic flow properties. For
a sufficiently low density of dislocation sources, only

isolated dislocations are generated and crack propa-
gation takes place in a brittle manner. On the other
hand, when ample nucleation sites are available and
the obstacle density is sufficiently low, the dislo-
cations strongly relax the near-tip stresses, resulting
in continued crack tip blunting without crack propa-
gation. The circumstances to be considered in this
paper fall between these two limiting situations so
that decohesion accompanied by plastic dissipation
takes place, as in Refs [16–18].

2. DISCRETE DISLOCATION FORMULATION

We consider an infinitely long crack in a two-
dimensional single crystal subjected to far field mode
I loading as sketched in Fig. 1a. Symmetry about the
crack plane is assumed so that we need to consider
only half of the crystal. This small-scale yielding
problem is analyzed with plasticity assumed to be
confined to a rectangular window of Lp = 10 µm by
hp = 12.5 µm inside of which dislocations are treated
discretely; see Fig. 1a. The calculations are termin-
ated before dislocations reach the boundary of this
window. Remote from the crack tip, displacements
corresponding to the isotropic, linear elastic mode I
singular field are applied. With Cartesian coordinates
xi measured from the tip of the crack, the displace-
ment components on the remote boundary are pre-
scribed to be:

u1 �
KI

m�
r

2p
cos
q
2�1�2v � sin2

q
2� (1a)

u2 �
KI

m�
r

2p
sin
q
2�2�2v�cos2

q
2� (1b)

where

r � √x2
1 � x2

2 q � tan�1�x2

x1
�, (1c)

with m the shear modulus, n Poisson’s ratio and KI

the mode I stress intensity factor.
Crack initiation and growth are modeled using a

cohesive surface (see e.g. Ref. [19]) that extends over
a distance of xc in front of the initial crack. The
properties of this cohesive surface will be specified
later. Ahead of the cohesive surface, symmetry con-
ditions are prescribed. The boundary value problem
formulation and the numerical implementation follow
that in Refs. [11, 12] where further details and
additional references are given.

At each time step, an increment of the mode I stress
intensity factor K̇I�t is prescribed. At the current
instant, the stress and strain state of the body is
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Fig. 1. (a) Mode I crack problem with the imposed boundary conditions. (b) Irreversible cohesive law. (c)
Schematic of the applied stress intensity factor as a function of time.

known, so the forces on all dislocations can be calcu-
lated. On the basis of these forces we update the dis-
location structure, which involves the motion of dislo-
cations, the generation of new dislocations, their
mutual annihilation, their pinning at obstacles, and
their exit into the open crack. After this, the
increments in the stress and strain fields are solved
from the incremental version of the virtual work equ-
ation

�
V

sijd�ij dV�
1
2 �

Scoh

Tid�i dS � �
Sext

Ti dui dS. (2)

Here, V is the volume of the region analyzed, Sext is

the external surface and Scoh is the surface across
which cohesive tractions operate. Further, sij are the
components of the stress tensor, and

�ij �
1
2

(ui,j � uj,i), Ti � sijvj, (3)

with ni the components of the unit outward normal
on Scoh or Sext. The factor 1/2 in equation (2) stems
from the fact that, by virtue of symmetry, only half
of the work in the cohesive surface contributes to the
work in the region analyzed.

Superposition is used to determine the velocity,
strain-rate and stress-rate fields in the body with the
new dislocation distribution [13]
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u̇i � u̇̃ � u̇̂i, �̇ij � �̇̃ij � �̇̂ij, ṡij � ṡ̃ij � s·̂ ij.
(4)

The (~) fields are the sum of the fields of the individ-
ual dislocations, in their current configuration that
give rise to tractions T̃i and displacements ũi on the
boundary of the body. The individual dislocation
fields are those for an edge dislocation in a traction-
free half-space [20], with the traction-free surface
corresponding to the crack plane x2 = 0. The ( ˆ )
fields represent the image fields that correct for the
actual boundary conditions. Contrary to the (~) fields,
the latter are non-singular and are obtained with a
finite element method.

With the decomposition (4), the Peach–Koehler
force f(k) acting on the kth dislocation is given by

f(k) � n(k)
i (ŝij � �

m�k

s(m)
ij � �(k)

ij )b(k)
j . (5)

Here, n(k)
i is the slip plane normal, b(k)

j is the Burgers
vector and �(k)

ij is the image field on dislocation k due
to the traction-free surface, that is, the difference
between the half-space and infinite medium fields.
The direction of the Peach–Koehler force is in the
slip plane and normal to the dislocation line.

The elastic response of the material is taken to be
isotropic, with shear modulus m = 26.3 GPa and Pois-
son’s ratio n = 0.33. Plastic deformation is assumed
to occur by the motion of edge dislocations only, with
Burgers vector b = 0.25 nm. Dislocation motion is
taken to occur by glide only with no cross slip so that
dislocations remain on their slip planes. The magni-
tude of the glide velocity v(k) of dislocation k is pre-
scribed to be linearly related to the Peach–Koehler
force f(k) through the drag relation f(k) = Bv(k), with
B = 10�4 Pa s, which is a representative value for
aluminum [14].

Initially, the crystal is assumed to be free of mobile
dislocations, but to contain a random distribution of
dislocation sources and point obstacles. The sources
mimic Frank–Read sources and generate a dislocation
dipole when the magnitude of the Peach–Koehler
force exceeds a critical value of btnuc during a period
of time tnuc, with tnuc = 50 MPa and tnuc = 10 ns. The
obstacles, which could be small precipitates or forest
dislocations, pin dislocations and release them once
the Peach–Koehler force attains the obstacle strength
btobs, where tobs = 150 MPa. Annihilation of two dis-
locations with opposite Burgers vector occurs when
they approach each other within a critical annihilation
distance Le = 6b.

Both reversible and irreversible cohesive traction–
displacement relations are employed to account for
cyclic loading in non-oxidizing (vacuum) and oxidiz-
ing environments, respectively. We start by consider-
ing monotonic loading processes resulting in pure
mode I opening of the crack. As the incipient fracture

surface opens under the action of the loads, the open-
ing is resisted by cohesion at the atomistic scale. We
assume that the normal cohesive traction Tn has the
universal binding form [21]

Tn(�n) � �esmax

�n

dn

exp��
�n

dn
�, (6)

where �n is the total separation of the cohesive sur-
face, �n = 2u2(x2 = 0), and Tn is the traction normal
to the cohesive surface. As the cohesive surface sep-
arates, the magnitude of the traction increases,
reaches a maximum and then approaches zero with
increasing separation. To model conditions as could
occur in a perfect vacuum where there is no oxidation
of the newly formed surface, this relation is taken to
be followed in a reversible manner. The other limiting
case of complete oxidation of the newly formed sur-
faces, which is expected under normal atmospheric
conditions, is modeled by an irreversible cohesive
law. Partial oxidation of the newly formed surfaces
is not treated here, but has been observed experimen-
tally, as reported by Pelloux [22, 23] for Al alloys
fatigued in a weak vacuum.

The effect of the formation of the oxide layer and
the subsequent surface contact during unloading is
modeled by specifying unloading from and reloading
to the monotonic cohesive law according to the linear
incremental relation

Ṫn(�n) � �
esmax

dn

�̇n. (7)

An example of a typical Tn��n path for the irrevers-
ible cohesive law is shown in Fig. 1b. The traction
Tn increases with loading from A up to a maximum
value at B followed by a softening response as per
the universal binding law (6). The residual opening
�o marked in Fig. 1b represents the thickness of the
oxide layer on the newly created surface. Unloading
takes place along the path CD. Upon reloading, the
traction increases along DC and then follows the uni-
versal binding law (6) along CE.

In de-Andrés et al. [24] and Nguyen et al. [25]
irreversible cohesive surface descriptions were used
in conjunction with conventional continuum plasticity
to model fatigue crack growth. In Ref. [24] unloading
occurs toward the origin, while in Ref. [25] the
unloading–reloading hysteresis has the effect of
reducing the cohesive strength as cyclic loading pro-
gresses. The irreversibility of the cohesive law used
here gives rise to a residual opening but does not
affect the cohesive strength.

The parameters used in this study are
smax = 0.6 GPa and dn = 4b giving a work of separ-
ation, fn = esmaxdn of 1.63 J/m2. The work of separ-
ation can be related to a reference stress intensity fac-
tor K0 defined by
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K0 � � Efn

1�v2. (8)

For the material parameters used here
K0 = 0.358 MPa√m. The significance of K0 is that
crack growth in an elastic solid with the given cohes-
ive properties takes place at KI/K0 = 1 [26]. For
numerical reasons, the value of smax used here is
about a factor of four smaller than the theoretical
strength of aluminum. This small value of smax was
used since the length scale over which large gradients
occur in an elastic solid is proportional to the cohes-
ive length (E/smax)dn [27].

In all calculations, a finite element mesh of
120×100 bilinear quadrilateral elements was
employed. Inside the process region, there is a graded
80×80 element mesh, with the minimum mesh spac-
ing �0.01 µm. This can be compared with a cohesive
length, (E/smax)dn�0.1 µm. Resolving the dislocation
dynamics requires a small time step of �t = 0.5 ns.
Thus, the calculations were carried out with a rather
high loading rate of K̇I = 100 GPa√m/s in order to
reduce the time required for the computations. The
effect of loading rate is not explored here. However,
in Ref. [28], under monotonic loading conditions,
varying the loading rate by two orders of magnitude
was not found to change the crack growth behavior
qualitatively, although, of course, a strong tendency
was found for increased plastic deformation at lower
loading rates.

3. NUMERICAL RESULTS

In the calculations presented here the applied stress
intensity factor KI was varied with time between Kmin

and Kmax as shown schematically in Fig. 1c. The ratio
R = Kmin/Kmax and the difference �KI = Kmax�Kmin

are used to characterize the cyclic loading. To deter-
mine the fatigue threshold, calculations were carried
out with R fixed, starting at some �KI and then reduc-
ing it until a cycle-by-cycle crack growth rate da/
dN�10�3 µm/cycle was obtained. The fatigue thres-
hold, �Kth, was then defined to lie within the last two
values of the applied �KI. Typically steps of
�KI/K0 = 0.05 were used.

3.1. Reference case

We present cyclic loading results for a reference
case using both the reversible and irreversible cohes-
ive surface laws. The reference material has three slip
systems such that the slip planes make angles f(a)

= (�60°, 0°, + 60°) with the crack plane x2 = 0. All
slip planes have a spacing of 86b in the process win-
dow. The material is initially dislocation-free with a
random source distribution having a density of
rsrc = 60/µm2 and a random obstacle distribution hav-
ing a density robs = 290/µm2 (densities are per unit
area in the process region). The source and obstacle

distributions are shown in Fig. 2a; there is no special
dislocation nucleation from the crack tip.

3.1.1. Fatigue with a reversible cohesive law.
For comparison purposes, a calculation was carried

out with KI monotonically increasing. The curve of
KI versus crack advance �a is shown in Fig. 2b. Here
and subsequently, the crack location is taken to be
the point along the cohesive surface where �n = 4dn.
Crack growth initiates at KI/K0�1.09. This is fol-
lowed by substantial plasticity and a sharp rise in the
resistance to crack growth (Fig. 2b). Here, as seen by
Cleveringa et al. [11], crack growth under monotonic
loading occurs in “spurts” with the dislocations play-
ing a dual role in the fracture process. On the one
hand, local stress concentrations associated with dis-
crete dislocations near the crack tip together with the
stress concentration associated with the crack itself
cause the crack to propagate. On the other hand, plas-
ticity caused by the motion of the dislocations
increases the resistance to crack growth and tends to
arrest the crack.

Next consider cyclic loading with the stress inten-
sity factor having a prescribed cyclic time dependence
as shown schematically in Fig. 1c. Crack advance
versus time curves for R = 0.3 and two values of �KI

are shown in Fig. 3a. In both cases Kmax is higher
than that required for crack growth to initiate under
monotonic loading conditions so that a “burst” of
crack growth occurs during the first loading cycle.
Subsequently, for the case with �KI/K0 = 1.12 the
behavior settles down to an incremental crack growth
da/dN�3×10�3 µm/cycle while for �KI/K0 = 0.98,
da/dN	10�3 µm/cycle. Thus, 0.98	�Kth/K0	1.12. It
is worth emphasizing here that we get continued
crack growth under cyclic loading for a value of
Kmax at which the crack would have arrested under
monotonic loading.

Figure 3b clearly shows that the dislocation density
(per unit area in the process window) increases with
the number of loading cycles for �KI/K0 = 1.12.
Consequently, the dislocation structures at the end
and beginning of each cycle are not the same. This
is demonstrated in Figs 4a and b showing the dislo-
cation structure after the first and seventh load peak,
respectively. For �KI/K0 = 0.98, which is below the
threshold, there is gradual increase in the dislocation
density during the first eight cycles, shown in Fig. 3b,
but this is followed by “plastic shakedown” with no
cycle-by-cycle change in the dislocation density (not
shown in Fig. 3b).

Similar cyclic loading calculations were carried out
for various values of R. The results of those calcu-
lations are summarized in Fig. 5a, with the bars rep-
resenting bounds on the computed value of �Kth. Fig-
ure 5a reveals that �Kth is insensitive to the load ratio
for R
0.3. Below this value of R the fatigue threshold
increases with decreasing values of R.

The calculations indicate an intrinsic effect of the
load ratio R on �Kth because no crack closure was
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Fig. 2. (a) Dislocation source and obstacle distribution in a 1 µm×1 µm region around the initial crack tip for
the reference material (rsrc = 60/µm2 and robs = 290/µm2). The dislocation sources are represented by “o” and
the obstacles by “ |” . (b) Applied stress intensity factor KI/K0 versus crack extension �a for monotonic loading

with the reversible and irreversible cohesive surface laws.

Fig. 3. (a) Time evolution of the crack growth and (b) time
evolution of the dislocation density for the case with the revers-

ible cohesive surface law (R = 0.3).

observed, even at R = 0.1. To understand the intrinsic
dependence of the fatigue threshold on the load ratio
R, the data are plotted in Fig. 5b using the axes �Kth

and Kmax. The figure suggests that crack growth can
occur under cyclic loading if and only if: (i) the cyclic
amplitude �KI exceeds a critical value �K∗

th; and (ii)
the maximum stress intensity Kmax exceeds a critical
value K∗

max.
The existence of these two parameters can be

rationalized by first making the following general
observations: with a reversible cohesive law, fatigue
cannot occur if the material behavior is elastic
because the state of the system then only depends on
the current value of the loading parameter and not on
its history. As a consequence, crack growth in an elas-
tic system either occurs in the first cycle or it does
not occur at all. In addition, if the state of the system
does not change during the unloading–reloading part
of the cycle, fatigue crack growth is also precluded
because the response then only depends on the peak
value and not on how (or when) it is attained. Hence,

1. For sufficiently low Kmax, no dislocations are gen-
erated and the system is elastic. Therefore, for
fatigue to occur with a reversible cohesive law,
Kmax must be at least large enough to nucleate dis-
locations in the surrounding field (this value
depends on the source distribution). Effectively,
there must be some minimum amount of plastic
dissipation. Consequently, fatigue cannot occur
below a minimum Kmax denoted by K∗

max.
2. For Kmax�K∗

max, interactions within the now dense
dislocation structure act to retard dislocation
motion. Accordingly, a minimum cyclic stress
intensity factor range �KI is needed to induce dis-
location motion during unloading and reloading.
Thus, in this regime, �KI below a critical threshold
value �K∗

th precludes crack growth.
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Fig. 4. Dislocation structures for the case with the reversible cohesive law (R = 0.3 and �KI/K0 = 1.12) at (a)
the first and (b) the seventh load peak. All distances are in µm. The crack opening profiles (displacements

magnified by a factor of 10) are plotted below the x1-axis.

3.1.2. Fatigue with an irreversible cohesive law.
The monotonic KI versus crack extension �a curve

for the irreversible cohesive law is shown in Fig. 2b.
Compared to the calculation with the reversible
cohesive surface, crack growth initiates slightly earl-
ier at KI/K0�1.03. This difference arises from local
unloading effects due to individual dislocations.

As with the reversible cohesive law, a series of cal-
culations are carried out with a fixed value of R in
which �KI is decreased until a crack growth rate
da/dN	10�3 µm/cycle is obtained. Results from a
typical set of calculations with R = 0.3 and with three
values of �KI are shown in Fig. 6. In Fig. 6a, crack
growth occurs during the first loading cycle for
�KI/K0 = 0.77, while crack advance does not com-
mence until the third loading cycle for
�KI/K0 = 0.707 and until the fourth loading cycle for
�KI/K0 = 0.658. These results are consistent with the
monotonic loading results of Fig. 2b where an
initiation level of 1.03K0 was found. For the cases
with �KI/K0 = 0.77 and 0.707 we see that after the
initial “burst” of crack growth, the behavior settles
down to an incremental growth rate
da/dN�6×10�3 µm/cycle and 2×10�3 µm/cycle,
respectively. This incremental crack advance takes
place due to a “spurt” of crack growth towards the
end of every loading cycle (see the inset in Fig. 6a).
On the other hand, for �KI/K0 = 0.658 the crack
advances and retracts during every loading and
unloading phase. Thus, for R = 0.3 we have 0.658	
�Kth/K0	0.707.

The time evolution of the dislocation densities plot-
ted in Fig. 6b shows that for �KI/K0 = 0.77 and 0.707,
the dislocation densities increase rapidly during the
first few cycles corresponding to the high crack
growth rates. Subsequently, the rate of increase of the
dislocation density settles down and attains a value
that is approximately the same for both

�KI/K0 = 0.77 and 0.707. By contrast, after the first
two cycles no cycle-by-cycle change in the dislo-
cation density is seen in the case with
�KI/K0 = 0.658. Examination of the time evolution of
the dislocation densities revealed that there is a rapid
increase in the dislocation density corresponding to
the “spurt” of crack growth near the end of every
loading cycle (for �KI/K0 = 0.77 and 0.707). This
results in multiple slip systems becoming simul-
taneously active and gives rise to the crack length
fluctuations seen towards the end of every loading
cycle (inset of Fig. 6a).

Values of �Kth estimated from a series of calcu-
lations for different values of R are summarized in
Fig. 5a. We see that �Kth decreases approximately
linearly with increasing R up to Rc�0.6, followed by
a plateau. The results replotted in Fig. 5b using the
axes of �Kth versus Kmax look similar to those with
the reversible cohesive law, albeit with smaller values
of �K∗

th and K∗
max = �K∗

th/(1�Rc). However, the mech-
anisms involved are quite different.

The unloading path specified in the irreversible
cohesive law simulates surface contact due to the for-
mation of oxide layers on the newly created surfaces:
locations along the cohesive surface where the open-
ing �n exceeds 4dn but are under the action of com-
pressive surface tractions correspond to points where
closure has occurred. Closure in our simulations
occurred in the following manner. On unloading from
the maximum load, the surfaces at the original
location of the crack tip (x1 = 0) first come into con-
tact. Further reduction in the applied KI results in this
contact zone spreading from the original crack tip
towards the current crack tip, as shown schematically
in Fig. 7. Complete closure with contact of the crack
faces at the current location of the crack tip occurs
at an applied stress intensity factor KI = Kcl. Upon
reloading, the crack faces first separate at the current
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Fig. 5. (a) Variation of �Kth with load ratio R. (b) �Kth as a function of the applied Kmax. (c) Load ratio
dependence of the effective fatigue threshold �Keff

th . The effective �KI is defined through Equation (9). Note
that the bars represent bounds on the appropriate quantities due to the fact that we have estimated �Kth by

reducing the applied �KI in discrete steps of 0.05K0.

location of the crack when KI = Kop. Continued load-
ing results in the contact zone retracting towards the
original location of the crack tip until finally the crack
completely opens. To quantify closure, we define d
to be the distance from the current crack tip to the
location where closure has occurred. Thus, d/�a = 1
and 0 correspond to fully open and closed cracks,
respectively. Curves of KI/Kmax versus d/�a are plot-
ted in Fig. 7 for near-threshold values of �KI (KI is
normalized by Kmax to enable us to clearly plot all the
curves in a single figure). After the first three or four
cycles these curves settle down and do not change
appreciably from cycle to cycle. Thus, for clarity only
one loading and unloading cycle is shown in each
case. We observe that:

1. Complete crack closure occurs for R = 0.1, 0.3 and
0.6 but not for R = 0.7.

2. The crack closure stress intensity factor, Kcl, and
the crack opening stress intensity factor, Kop, are
approximately equal and insensitive to the value
of R. Upon noting that Kmax/K0�1 for the cases
where closure occurred, we see that
Kcl�Kop�0.5K0. This observation does not hold
for �KI values well above the fatigue threshold
and it will be shown subsequently that for a fixed
value of R, Kcl decreases with increasing �KI.

3. The KI/Kmax versus d/�a curves flatten out as KI

approaches its peak value. The spurt of crack
growth and ensuing fluctuations seen at the end of
every loading cycle (see the inset in Fig. 6a) occur
during this period.

We now proceed to examine the load ratio depen-
dence of �Kth using the above closure observations.
When the crack faces are in contact, the stresses in the
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Fig. 6. (a) Time evolution of the crack growth and (b) time
evolution of the dislocation density for the case with the irre-

versible cohesive surface law (R = 0.3).

vicinity of the crack tip are much reduced, inhibiting
dislocation nucleation and glide as well as lessening
the driving force for separation. As a consequence,
crack propagation generally takes place only during
the fraction of the fatigue loading cycle in which the
crack faces at the tip are separated, see, for example,
Refs. [29, 30]. The effective stress intensity range
�Keff responsible for crack growth is:

�Keff � �Kmax�Kop for Kmin	Kop

�KI for Kmin�Kop.
(9)

Curves of �Keff
th are plotted in Fig. 5c as a function

of R. The absence of any load ratio effect for the irre-
versible cohesive law (as compared to that seen in
Fig. 5a) suggests that the increase in �Kth with
decreasing R is in fact a closure phenomenon; the

Fig. 7. The applied KI versus crack closure for the case with
the irreversible cohesive law and near-threshold values of �KI.
Crack closure is parameterized by d/�a with d/�a = 1 and 0
corresponding to fully open and closed cracks, respectively.
Only a single loading unloading cycle is shown in each case

for the sake of clarity.

fatigue threshold with the irreversible cohesive law is
at a constant effective threshold stress intensity factor
range �K∗

th. Using the observation that the crack clos-
ure stress intensity factor Kcl = Kop is approximately
independent of R at threshold (Fig. 7), we rationalize
the two distinct regions in the �Kth versus R plot as
follows. For Kmin	Kop crack closure occurs and

�Kth � (1�R)(�K∗
th � Kop) (10a)

where we have employed the relation �K = (1�
R)Kmax. No crack closure occurs for Kmin�Kop and
the threshold criteria is simply given by

�Kth � �K∗
th. (10b)

Equation (10a) is equivalent to Kmax at threshold hav-
ing the constant value �K∗

th + Kop and equations (10a)
and (10b) together imply that the transition in the
�Kth versus R plot occurs at Rc = Kop/(�K∗

th + Kop).
Note that equation (10) has the same form as the
Schmidt and Paris [31] model for the load ratio
dependence of the fatigue threshold. However, the
mechanism is different: Kcl in our plane strain calcu-
lations with the irreversible cohesive law is an out-
come of surface contact due to the formation of oxide
layers on newly created surfaces while Schmidt and
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Paris [31] based their model on plasticity induced
closure which is a plane stress phenomenon. Equation
(10) with �K∗

th = 0.45K0 and Kop/K0 = 0.55 is plotted
in Fig. 5a and agrees very well with the numerical
results. That Kop + �K∗

th�K0 for this reference case
calculation is merely coincidental and it will be
shown in Section that this does not generally hold.
We emphasize that although Kmax�K0, which is a
measure of the energy required to create the new
crack surface, crack growth occurs under cyclic load-
ing with Kmax much less than the KI value needed for
the same crack to grow under monotonic loading con-
ditions.

It is worth mentioning that, consistent with experi-
ment as summarized in Ref. [2], our simulations show
that �K∗

th for the irreversible cohesive surface is less
than half the value for the reversible cohesive surface.
Moreover, the “ intrinsic” K∗

max does not play a role
with the irreversible cohesive surface.

3.2. Parameter sensitivity

We now present three case studies with the aims
of: (i) illustrating the sensitivity of the above results
to material parameters; and (ii) assessing the ability of
the model to capture certain well-known experimental
observations related to fatigue crack growth.

3.2.1. Effect of obstacle density. The irreversi-
bility of dislocation motion was seen to be the origin
of continued crack growth under cyclic loading. Since
pinning of dislocations at obstacles has a major effect
on this irreversibility, we present results for a material
with a lower obstacle density of robs = 145/µm2 but
otherwise identical to the reference case with the irre-
versible cohesive law.

A comparison between the monotonic crack growth
resistance curves of the reference case and a low
obstacle density material is shown in Fig. 8a. Crack
growth in the low obstacle density material initiates
at a higher value of KI/K0�1.24. Subsequently, there
is an increase in the resistance to crack growth and
the R-curves of the two materials converge for
�a
0.2 µm. Under cyclic loading conditions, the
crack growth behavior of the low obstacle density
material was found to be qualitatively similar to that
of the reference material and here we only summarize
the results for �Kth.

The �Kth versus R plot for the low obstacle density
material is shown in Fig. 8b. Again we see that �Kth

decreases approximately linearly with R and then pla-
teaus out at Rc�0.7. An analysis similar to that
described above revealed that this value of R corre-
sponded to the onset of crack closure: complete crack
closure occurred in this case at Kcl�0.8K0. Thus, in
line with our findings for the reference case, the two
regions in the �Kth versus R plot emerge due to crack
closure and the bilinear relation (10) fits the numeri-
cal results rather well with Kop/K0 = 0.79 and
�K∗

th/K0 = 0.39.
A comparison between the fatigue threshold

values, �Kth, for the reference and low obstacle den-

Fig. 8. (a) Applied stress intensity factor KI/K0 versus crack
extension �a for two obstacle densities. The source density is
rsrc = 60/µm2. (b) Fatigue threshold as a function of the load
ratio for the two obstacle densities considered. Note that the
bars represent bounds on �Kth due to the fact that we have
estimated �Kth by reducing the applied �KI in discrete steps

of 0.05K0.
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sity materials is also shown in Fig. 8b. Corresponding
to the 20% higher monotonic crack growth initiation
stress intensity factor, �Kth for the low obstacle den-
sity material is also about 20% higher than that of the
reference material at low values of R. However, this
trend reverses for higher R values with �K∗

th for the
low obstacle density material being lower than that
for the reference case material. This can be under-
stood by noting that when the obstacle density is low-
ered, there are fewer dislocations piled up at
obstacles. Hence, in the high R regime where the dis-
location density is high, lowering the obstacle density
acts to increase the mobility of dislocations which
means a smaller �KI is needed to induce dislocation
motion during the unloading–reloading part of the
cycle. Thus, �K∗

th is indeed expected to decrease with
decreasing obstacle density. On the other hand, for
low values of R, �Kth is dominated by crack closure.
In these simulations the reduced obstacle density
increased Kop which resulted in an increase in �Kth.

Cyclic loading simulations with the reversible
cohesive law indicated that the fatigue thresholds of
the low obstacle density material are very high, for
example, for R = 0.3, �Kth/K0
1.7. The high �KI

values (with correspondingly high dislocation
densities) made the computations extremely time con-
suming and therefore detailed results for this case are
not presented. Nevertheless, the calculations indicate
that with the reversible cohesive law the fatigue thres-
hold values for the low obstacle density material are
substantially higher than the corresponding values for
the high obstacle density, reference material. This
contrasts with the fatigue thresholds for the low
obstacle density and high obstacle density materials
differing by only about 20% when the irreversible
cohesive law is employed.

3.2.2. Effect of tensile overloads. The Paris law
which is commonly used to quantify crack growth
rates at post-threshold �KI values breaks down when
the crack is subjected to a sudden tensile overload
[32]. In particular, a single tensile overload may sig-
nificantly retard crack growth. Here we carry out cal-
culations in the post-threshold regime and investigate
the predictions of the present model regarding this
well-documented overload effect. While in experi-
ments the overload is typically applied after nomin-
ally steady state conditions have been attained, for
computational reasons we apply the overload in the
second cycle. The reference material parameters with
the irreversible cohesive surface are used.

First, consider constant amplitude loading with
R = 0.3 and �KI/K0 = 0.90 as shown in Fig. 9a. From
the time evolution of the crack growth plotted in Fig.
9b we see that the crack growth is accelerating for
the first seven cycles. The calculations were stopped
after the crack had advanced by about 0.20 µm as
dislocations by then are approaching the boundary of
the process window. Some insights into the mech-
anisms of crack growth at this higher applied �KI are

gained by examining the time evolution of the crack
closure parameter d/�a shown in Fig. 9c. Crack clos-
ure with d/�a = 0 occurs for the first six cycles and
then a state with no crack closure is achieved. This
indicates that �KI/K0 = 0.90 corresponds to a Stage
II stress intensity factor range; no crack closure even
at low R values is characteristic of Stage II crack
growth [1]. Examination of the results reveals that Kcl

is reducing during the first six cycles and then settles
down to a value less than Kmin = 0.39K0, thus preclud-
ing crack closure. For this high value of
�KI/K0 = 0.90, Kcl has a “steady-state” value less than
the value 0.5K0 seen under near-threshold conditions.
This post-threshold loading case clearly illustrates
continued crack growth under cyclic loading con-
ditions at a value of Kmax at which the crack would
have arrested under monotonic loading: with
Kmax/K0�1.29, the crack grows by about 0.2 µm after
eight cycles (Fig. 9b), whereas KI/K0�2.0 is needed
for the crack to grow by that length under monotonic
loading conditions (Fig. 9b).

Next consider two loading histories with a single
tensile overload on the second loading cycle but
otherwise identical to the constant amplitude loading
case considered above:

1. a single overload 8% above the nominal Kmax: The
overload cycle causes an additional crack advance
of about 0.005 µm followed by retarded crack
growth; after 10 cycles the overloaded crack
advanced �a�0.1 µm as compared to
�a�0.22 µm in the constant amplitude loading
case. This retardation can be understood by
observing that crack closure continues beyond the
sixth cycle (Fig. 9c). Thus, the effective driving
force on the crack is lower than that in the constant
amplitude loading case so that the crack growth
rate is reduced. This calculation was continued for
15 cycles, but typically the retarded growth rates
are seen for 
200 post-overload cycles [32],
which is much larger than the number of cycles
computationally feasible here.

2. a single overload 16% above the nominal Kmax:
The overload results in an additional crack
advance of about 0.05 µm. Subsequently, da/dN
approximately equal to that for the constant Kmax

case is prematurely attained as the overload has-
tens the end of crack closure.

3.2.3. Effect of slip geometry. In the near-thres-
hold region, plastic zone sizes are small and the dis-
creteness of the dislocation fields is expected to play
an important role in governing the crack growth
behavior. In the two-dimensional analysis presented
above, the material had three slip systems, so that
there is a redundancy in available slip systems, as for
three-dimensional fcc and bcc crystals. Now consider
a crystal identical to the reference material but with
the f(a) = 0° slip planes deactivated. With a slip sys-
tem flow strength to, an asymptotic analysis [33] for
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Fig. 9. (a) The applied stress intensity factor as a function of time with R = 0.3 and (i) no overload with
�KI/K0 = 0.90; (ii) 8% overload on the second cycle; (iii) 16% overload on the second cycle. (b) Evolution
of the crack advance with time for these three cases. (c) Crack closure as parameterized by d/�a for three

loading histories shown in (a).

a stationary crack under monotonic loading con-
ditions, predicts that the crack opening stresses for
the two and three slip system materials are
4√3to�6.93to and 10to/√3�5.77to, respectively.
Thus, continuum crystal plasticity predicts that the
three slip system material is more effective in
relaxing the near-tip stresses and hence would be
expected to have a higher resistance to crack growth.
It is worth mentioning here that away from the near-
tip region the stress levels in the discrete dislocation

simulations of Van der Giessen et al. [12] agree very
well with the continuum plasticity values.

Discrete dislocation predictions (with the irrevers-
ible cohesive law) of monotonic crack growth resist-
ance curves for the two and three slip system
materials are shown in Fig. 10a. The remote applied
KI required to propagate a crack in the two slip sys-
tem material is about 20% higher than that required
for the three slip system material. Next consider cyc-
lic crack growth. The discrete dislocation predictions
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Fig. 10. (a) Comparison between the applied stress intensity
factor KI/K0 versus crack extension �a for a material with two
slip systems and for the reference material. (b) Fatigue thres-
hold as a function of the load ratio for the reference case and
two slip system materials. Note that the bars represent bounds
on �Kth due to the fact that we have estimated �Kth by reducing

the applied �KI in discrete steps of 0.05K0.

of the near-threshold fatigue crack growth behavior
were qualitatively similar for the two and three slip
system materials with crack closure occurring in both
cases at low R values. A comparison between �Kth

for the materials is shown in Fig. 10b: the fatigue
threshold of the two slip system material is at least
20% higher than that of the three slip system material
for all values of R considered. Thus, contrary to
expectations based on conventional continuum crystal
plasticity, the monotonic and cyclic crack growth
resistance of the two slip system material is higher
than that of the three slip system material. These
results indicate that the dislocations on the slip sys-
tems parallel to the crack do not relax the near tip
stresses but have an anti-shielding effect. However,
analytical expressions for the stress fields due to edge
dislocations around the tip of a semi-infinite sharp
crack [34] show that dislocations on slip planes paral-
lel to the crack do not in fact contribute to the mode
I stress intensity factor. This suggests that the anti-
shielding results from the different dislocation struc-
tures that develop on the inclined slip planes due to
the presence of dislocations on the 0° slip planes.

4. DISCUSSION

In the models of Pippan and co-workers [4–6] and
Wilkinson et al. [7], dislocation nucleation is
assumed to occur exclusively from the crack tip (or
a single source near the crack tip) and crack growth
is taken to occur when a specified slip criterion is
met, which does not require high stresses at the crack
tip. These models do not address crack growth
behavior under monotonic loading conditions. Also,
any contribution of dislocations nucleated away from
the immediate crack tip region to the local stress field
or to the plastic dissipation is neglected. By way of
contrast, crack growth by material separation, which
requires high crack tip stresses, is a direct outcome
of our calculations under both monotonic and cyclic
loading conditions. The fracture and plasticity charac-
teristics of the material are specified independently
and, in particular, the same discrete dislocation para-
meters are used to characterize plastic flow when
there is no initial crack (e.g. in bending [10]).

Our simulations exhibit several features that are in
remarkable accord with what is seen experimentally.
In addition, the simulations make predictions about
aspects of fatigue crack growth that have not yet been
conclusively resolved experimentally. For example, it
has been suggested [2] that current experimental
methods may overestimate the reduction in the effec-
tive �K caused by crack closure and that the
R = Kmin/Kmax dependence of the fatigue threshold
cannot be solely attributed to premature closure of the
crack. The calculations modeling both perfect vac-
uum and oxidizing environmental conditions exhibit
a dependence of the fatigue threshold on R. With a
reversible cohesive law this is an outcome of insuf-
ficient plasticity at low R values whereas with an irre-
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versible cohesive law, the R dependence is an out-
come of crack closure at low values of R. For both
cohesive laws, we find the fatigue threshold to be
insensitive to R for larger values of R. Also, various
mechanisms for crack growth retardation following a
tensile overload have been proposed (e.g. crack tip
blunting, an enlarged zone of residual compressive
stresses, activation of near-threshold mechanisms, see
Ref. [1]). In our calculations a small overload
enhances crack closure which results in a retardation
in the crack growth rate.

Vasudevan et al. [2] analyzed fatigue threshold
data from the literature and rather surprisingly
observed that irrespective of material composition,
crystallographic structure etc. the values of
�K∗

th/K∗
max for materials tested in vacuum and air were

about 1.0 and 0.4, respectively. This is in good agree-
ment with our results: we obtain �K∗

th/K∗
max�0.8 for

the reference case material with the reversible cohes-
ive law and �K∗

th/K∗
max�0.4, 0.33 and 0.38 for the ref-

erence, high obstacle density and two slip system
materials, respectively, with the irreversible cohesive
law. However, the absolute values of �Kth obtained
from our simulations are much lower than seen exper-
imentally. With K0 = 0.358 MPa√m, our calculations
predict �K∗

th�0.4 MPa√m in vacuum and
�K∗

th�0.16 MPa√m in air. These are nearly an order
of magnitude lower than the corresponding values for
Al alloys reported in Ref. [2]. The discrepancy may
be due to several idealizations in the model. For
example, for numerical reasons, we have used a value
of K0 that is about a factor of 2 smaller than represen-
tative of aluminum and the amount of plastic dissi-
pation accompanying crack growth will increase with
increasing cohesive strength; a high loading rate is
used to reduce the computing time and this also acts
to decrease the amount of plastic dissipation; the
analyses are carried out for pure mode I loading with
symmetry assumed about the crack plane, while in
single crystals mixed mode loading conditions gener-
ally prevail at the crack tip [35]; the model is purely
two dimensional, with both three-dimensional dislo-
cation effects and three-dimensional crack growth
effects neglected; and the effects of crack tip blunting
are not taken into account in our small strain analyses.
However, it is also possible that at least some of the
discrepancy arises because the calculations are carried
out for small amounts of straight ahead crack growth
in a single crystal, while experimental values typi-
cally pertain to much larger amounts of crack growth
in a polycrystal, with effects such as crack growth
off the initial crack plane and interactions with grain
boundaries possibly coming into play.

It is important to note that both the discrete dislo-
cation framework and the cohesive surface frame-
work are extensible. Each applies in a broad range
of circumstances beyond crack growth under cyclic
loading conditions. The formulation used here can be
extended, for example, to mixed mode loading con-
ditions, to allow crack growth off the initial crack

plane and to fully account for three-dimensional
effects, albeit at a greatly increased computational
cost. Of particular interest is extending the compu-
tations into the post-threshold regime to explore
whether or not a Paris-type law for crack growth
emerges from our formulation and, if it does, what
its dependence is on various parameters.

5. CONCLUSIONS

Analyses of near-threshold fatigue crack growth in
model single crystals under mode I plane strain con-
ditions have been carried out where plastic flow arises
from the collective motion of large numbers of dis-
crete dislocations and the fracture properties are
embedded in a cohesive surface constitutive relation.
The only difference between the boundary problem
formulations for monotonic and cyclic loading is the
prescribed time variation of the remote stress inten-
sity factor. Cohesive constitutive relations rep-
resenting reversible separation, as may occur in a per-
fect vacuum, and irreversible separation, as in an
oxidizing environment have been employed. General
features that emerge from the calculations include:

� Crack growth occurs under cyclic loading con-
ditions when the driving force is smaller than what
is needed for the crack to grow under monotonic
loading conditions.

� The origin of continued crack growth under cyclic
loading lies in the irreversibility of dislocation
motion.

� Under cyclic loading conditions as well as under
monotonic loading conditions, the crack advances
due to locally high stress concentrations ahead of
the crack mediated by clustering of dislocations
near the tip. Because of this, the relative fracture
resistances of three slip system and two slip sys-
tem crystals is the opposite of what would be
expected based on conventional continuum plas-
ticity.

� The predicted fatigue crack growth threshold
depends sensitively on the irreversibility of the
cohesive surface. For a reversible cohesive sur-
face, the occurrence of fatigue is controlled
entirely by the irreversibility of dislocation
motion. For an irreversible cohesive surface, crack
closure plays a key role in setting the fatigue thres-
hold with �Keff

th being nearly insensitive to the
value of the loading ratio R = Kmin/Kmax (see Fig.
5c).

� In the post-threshold regime, a sufficiently small
overload is found to retard crack growth while a
larger overload is found to accelerate crack
growth. The mechanism for this is that the small
overload promotes crack closure while the larger
overload hastens the end of crack closure.

� The predictions for the qualitative features of the
fatigue crack growth threshold, such as the form
of its dependence on the loading ratio R, are in
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remarkable accord with experimental obser-
vations.
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