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Discrete dislocation modeling of fatigue crack propagation
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Abstract

Analyses of the growth of a plane strain crack subject to remote mode I cyclic loading under small-scale yielding
are carried out using discrete dislocation dynamics. Cracks along a metal–rigid substrate interface and in a single crystal
are studied. The formulation is the same as that used to analyze crack growth under monotonic loading conditions,
differing only in the remote stress intensity factor being a cyclic function of time. Plastic deformation is modeled
through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation
nucleation, dislocation interaction with obstacles and dislocation annihilation being incorporated through a set of consti-
tutive rules. An irreversible relation is specified between the opening traction and the displacement jump across a
cohesive surface ahead of the initial crack tip in order to simulate cyclic loading in an oxidizing environment. The
cyclic crack growth rate log(da/dN) versus applied stress intensity factor range log(�KI) curve that emerges naturally
from the solution of the boundary value problem shows distinct threshold and Paris law regimes. Paris law exponents
in the range 4 to 8 are obtained for the parameters employed here. Furthermore, rather uniformly spaced slip bands
corresponding to surface striations develop in the wakes of the propagating cracks. 2002 Acta Materialia Inc.
Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

For fatigue crack growth in a wide variety of
engineering materials under remote mode I load-
ing, there is a threshold value of�KI � Kmax�
Kmin below which cracks do not grow at a detect-
able rate. Above this threshold value, in the regime
where the amount of crack growth per cycle,
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da/dN, is of the order of a few lattice spacings,
there is a steep increase in da/dN with �KI. For
larger values of �KI, the increase in da/dN
becomes less steep and the Paris law regime (Paris
et al. [1]) is entered where da / dN�(�KI)m. A criti-
cal review of work on fatigue crack growth mech-
anisms from the threshold through the Paris law
regimes is given by Davidson and Lankford [2].

There are a number of characteristic features of
the crack growth behavior in the Paris regime [2].
Experimentally, the value of the Paris exponentm
ranges widely; values of 2–4 are typically reported
for ductile metals, e.g. [3,4], while values varying
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from 4.5 to as high as 40 have been seen for inter-
metallics and nickel-based superalloy single crys-
tals [5,6]. Slip striations are commonly observed
with a spacing that is of the order of the amount
of crack growth per cycle. In contrast, when stri-
ations are observed in the threshold regime, their
spacing is generally much greater than the amount
of crack growth per cycle. In some cases, steady
cycle-by-cycle crack growth rates have been
observed, while in other cases crack growth is
reported to be intermittent [7] so that a steady
growth rate is only apparent, arising from averag-
ing the growth rate over many cycles.

Many continuum theories have been proposed
to rationalize the dependence of the fatigue crack
growth rate on �KI in the Paris regime. The geo-
metrical models, by for example Laird and Smith
[8] and McClintock [9], presume that the crack
growth rate is proportional to the cyclic crack
opening displacement which, in turn, is pro-
portional to (�KI)2. Hence, geometrical models
predict a Paris exponent m � 2. Damage accumu-
lation models, such as those of McClintock [10],
Weertman [11] and Rice [12], give rise to a Paris
exponent m � 4. McClintock [10] used a critical
strain-based failure criterion while Rice [12] used
a critical value of the absorbed hysteresis energy.
More recently, Nguyen et al. [13] reported numeri-
cal calculations of fatigue crack growth in which
the material was characterized by a conventional
continuum plasticity model and the fracture
properties were embedded in a cohesive relation.
Non-dissipative cohesive relations resulted in plas-
tic shakedown after a few cycles with no further
crack growth. Thus, Nguyen et al. [13] employed
a cohesive law with loading–reloading hysteresis
and obtained Paris-like behavior with m�3. None
of the above continuum models account for the
wide range of Paris exponents observed exper-
imentally. Furthermore, these models are restricted
to the Paris law regime and do not predict the
change in the dependence on �KI that occurs near
the fatigue threshold.

Recent literature on dislocation models for
fatigue crack growth has been reviewed by Rie-
melmoser et al. [14]. These dislocation models, by
for example Pippan and co-workers [15–17] and
Wilkinson et al. [18], are meant to represent the

deformation-controlled fatigue crack growth mech-
anism proposed by Laird and Smith [8] and Neum-
ann [19]. In particular, Neumann’s model is based
on a mechanism that accounts for crack growth as
well as striations by an alternating duplex slip
mechanism. It is worth noting that striation forma-
tion is observed in fatigue crack growth at metal–
ceramic interfaces [20–22] even though the kin-
ematics of crack growth by an alternating slip
mechanism is not clear for a crack growing along
such an interface.

Here, we analyze the transition from near-thres-
hold to Paris law behavior using a unified frame-
work that is applicable in both the near-threshold
and Paris law regimes. Indeed, a key feature of our
approach is that the material model and the fracture
properties are independent of whether the loading
is monotonic or cyclic. In fact, the material model
is applicable whether or not there is a crack, see
e.g. [23]. The fracture properties are embedded in
a cohesive surface constitutive relation. As a
consequence, crack initiation and crack growth
emerge as natural outcomes of the boundary value
problem solution. In contrast to the solely defor-
mation-controlled crack growth mechanism
assumed in [15–18], crack growth in our calcu-
lations is stress as well as deformation driven. The
normal separation of the newly formed crack sur-
faces, which gives rise to an open crack, occurs
without requiring a particular crack tip slip mode.

As in our previous study [24] of near-threshold
fatigue crack growth, a plane strain small-scale
yielding boundary value problem is formulated and
solved in the small-strain limit. The deforming
material is a planar model crystal with three slip
systems. Plastic flow arises from the collective
motion of large numbers of edge dislocations,
which are represented as line singularities in an
elastic solid. Drag during dislocation motion, inter-
actions with obstacles, and dislocation nucleation
and annihilation are accounted for. The irreversi-
bility of dislocation motion is what gives rise to
continued crack growth under cyclic loading [24].

Most calculations are carried out for a ductile
metal single crystal bonded to a rigid substrate,
representing a metal–ceramic interface. In addition,
for comparison purposes, some calculations are
carried out for a crack in a homogeneous metal
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single crystal. Considering a metal–ceramic inter-
face has several advantages over the homogeneous
material case: (i) crack growth along interfaces
occurs when the interfacial cohesive strength is
lower than that of the surrounding homogeneous
materials; with decreasing cohesive strength the
plastic zone size decreases, which reduces the
computational time and decreasing cohesive
strength increases the effective cohesive length,
which improves numerical accuracy for a given
mesh resolution [25]; (ii) along a bimaterial inter-
face, crack growth often occurs along the interface
so that our assumption of straight-ahead crack
growth is appropriate; and (iii) even though
straight-ahead crack growth occurs, the mismatch
in material properties allows mixed-mode loading
effects to be explored. In addition, fatigue crack
growth along metal–ceramic interfaces is of inter-
est in its own right, see [20–22,26].

2. Discrete dislocation formulation

Details of the boundary value problem to be
solved are illustrated in Fig. 1. As mentioned
above, most calculations are for a crack along the
interface between a single crystal and a rigid sub-
strate. The analyses are two dimensional, under
plane strain, and the crystal is taken to have three
slip systems, to mimic the ambiguity of slip that
exists in three-dimensional FCC crystals. Two slip
systems have their slip planes oriented at q �

± 60° from the interface, the third one at q �
0°.1 Assuming small-scale yielding, plastic defor-

mation near the crack tip by the motion of discrete
dislocations is accounted for in a process window
of dimensions Lp � 15 µm by hp � 15 µm. The
size of the rectangular region analyzed is 1000
µm×500 µm.

The dislocations are treated as singularities in an
elastic continuum, where for computational con-
venience, the crystal is assumed to be elastically

1 In our previous study [24] we analyzed a crystal with two
slip systems at q � ± 60° and found that the qualitative fea-
tures of near-threshold fatigue were similar to those of the FCC-
like crystal with three slip systems.

Fig. 1. (a) Interface crack problem with the imposed boundary
conditions. (b) Irreversible cohesive law. (c) Schematic of the
applied stress intensity factor as a function of time.

isotropic with shear modulus m � 26.3 GPa and
Poisson’s ratio n � 0.33, which are representative
values for aluminum. Consistent with the plane
strain condition, only edge dislocations are con-
sidered, all having the same Burgers vector, b �
0.25 nm. The potentially active slip planes in the

process window are spaced at 100b. As suggested
by Kubin et al. [27], the following dislocation
mechanisms are incorporated: (i) dislocation glide;
(ii) annihilation; (iii) nucleation; (iv) obstacle pin-
ning. The glide velocity is taken to be linearly
related to the Peach–Koehler force with a drag
coefficient B � 10�4 Pa s, a representative value
for several FCC crystals. Dislocations of opposite
sign annihilate when they come within a critical
distance of Le � 6b. Initially, the three slip systems
are supposed to be dislocation free, but dislo-
cations can be generated from discrete sources that
are randomly distributed in the process window
with a density of 66/µm2. These point sources
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mimic Frank–Read sources from pinned segments
on out-of-plane slip systems which are not
explicitly considered. They generate a dipole when
the Peach–Koehler force exceeds a critical value
of tnucb during a period of time tnuc; here tnuc �
50 MPa and tnuc � 10 ns. There is no special dis-

location nucleation from the crack tip. The process
window also contains a random distribution of 170
point obstacles per µm2, which can represent either
small precipitates on the slip plane or forest dislo-
cations on out-of-plane slip systems. The obstacles
pin dislocations as long as the Peach–Koehler force
is below the obstacle strength btobs, where tobs �
150 MPa.

Ahead of the crack, a cohesive surface is
assumed, with properties specified by relations
between the normal (Tn) and tangential (Tt) trac-
tions across this surface and the corresponding dis-
placement jumps (�n, �t). These relations, which
include the mixed-mode failure properties of the
interface between the single crystal and the sub-
strate, are derived from a potential f [28] as

Ti � �
∂f
∂�i

, (i � n,t) (1)

with

f � fn � fn exp��
�n

dn
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The normal work of separation, fn, and the shear
work of separation, ft, can be expressed as

fn � esmaxdn, ft � �e
2
tmaxdt (3)

in terms of the normal strength smax and tangential
strength tmax, and the characteristic lengths dn and
dt (e � exp(1)). The coupling between normal and
tangential separation is governed by q � ft / fn

and r � �∗
n / dn, where �n

* is the value of �n after
complete shear separation with Tn � 0. The cohes-
ive surface characteristic lengths are taken to be
dn � dt � 0.5 nm for the interface. Also, the ratio
of tmax to smax is fixed at 2.33 so that fn � ft and
we take r � 0. The cohesive strengths are taken
as smax � 0.3 GPa and tmax � 0.699 GPa and thus

fn � ft � 0.408 J m�2. Such strengths are consist-
ent with experimental measurements of intrinsic
metal–ceramic interface strengths in [29]. The
work of separation is related to a reference stress
intensity factor K0 by the small-scale yielding
relation

K0 � � Efn

1�n2. (4)

The significance of K0 is that pure mode I crack
growth in a homogeneous elastic solid with the
given cohesive properties takes place at
KI / K0 � 1 [30]. For the material parameters used
in this interface problem K0 � 0.179 MPa √m.
Note that the quantity K0 is a measure of the energy
per unit area required to create new free surface.
The fracture strength under monotonic loading
conditions, KIc, will in general be significantly
greater than K0 due to plastic dissipation.

The cohesive law described above gives rise to
reversible behavior of the interface and can be used
under monotonic loading and under cyclic loading
in a non-oxidizing environment (vacuum). In oxid-
izing environments, oxidation of the new surfaces
formed by crack growth inhibits crack closure and
hence the cohesive law needs to be irreversible.
Our implementation of this is illustrated by the Tn–
�n response in Fig. 1b. The relations (1)–(3)
describe the loading response as the traction
increases from A up to the maximum value at B,
followed by softening while the formed crack
opens further. Unloading from any point C now
is specified to take place along path CD, with the
stiffness against normal separation given by

∂Tn

∂�n

� �
esmax

dn
. (5)

Upon reloading the traction increases along DC
and then follows the original softening curve BCE.
All other stiffnesses are unchanged from the
reversible cohesive relation (i.e. derived from the
potential f). Thus, the irreversible cohesive
relation accounts for premature surface contact due
to oxide formation but neglects any irreversibility
in the tangential tractions. As the normal opening
gradually increases with continued cyclic loading,
the permanent opening �o grows, but not more
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than a predefined value of �s. This represents the
asymptotic value of the oxide layer thickness for-
med on a metal surface: under ambient conditions
this is reported to be between 2 and 6 nm for
aluminum [31] and in the calculations we take
�s � 4 nm.

Apart from the traction-free crack and the cohes-
ive surface ahead of the crack, the boundaries of
the region analyzed are subjected to displacement
boundary conditions corresponding to a mode I
isotropic linear elastic crack tip field. Analytical
expressions are available for two limiting cases.
For a crack along a perfectly bonded interface, the
near-tip fields are inherently mixed mode involving
both mode I (tension) and mode II (shear), even
for remote tensile loading, with the mode I to mode
II ratio varying with distance from the crack tip,
e.g. [32,33]. The variation with distance from the
crack tip is oscillatory, with the oscillatory index
depending on the elastic mismatch, and involves
an arbitrary reference length. On the other hand, if
the shear cohesive stiffness of the interface is zero,
the much simpler homogeneous mode I linear elas-
tic crack tip fields (e.g. [3], Chapter 14) prevail.
Neither of these is an exact solution for the rela-
tively weak interfaces considered. In the calcu-
lations here, displacement boundary conditions
having the form of the homogeneous mode I linear
elastic crack tip field are imposed. This has the
advantage, for the rectangular region analyzed, of
avoiding having to specify an arbitrary reference
length. Even though the homogeneous mode I field
is prescribed on the remote boundary, the stiffness
mismatch between the crystal and the substrate
gives rise to mixed-mode loading conditions within
the region analyzed.

The applied stress intensity factor, KI, is pre-
scribed to cycle between a maximum value of Kmax

and a minimum value Kmin as shown in Fig. 1c.
The loading frequency is chosen such that the load-
ing rate |K̇I| has a constant value of 100 GPa √m/s
(this high value is chosen for computational
reasons and is not expected to affect the results
qualitatively [34]). The duration of a cycle is
2�KI / |K̇I|, and with the interface properties men-
tioned above, can be expressed as 3.6 �KI/K0 µs.

The boundary value problem thus defined is
nonlinear and is solved in an incremental manner

as discussed in detail in [24,35]. For each time
step, the long-range fields of the dislocations and
the resulting Peach–Koehler forces between them
are determined by means of a superposition
method [36]. The central idea is to decompose
these fields into the analytical singular fields of
individual dislocations in a half-space, and image
fields to correct for the boundary conditions. The
latter are nonsingular and are obtained with a finite
element method (using a graded mesh of 90 by 90
elements in the process window). The singular part
of the fields and the discontinuities in the displace-
ment fields are represented analytically.

Some computations are carried out for a crack
in a metal single crystal, as in our previous study
of the near-threshold regime [24]. The problem
sketched in Fig. 1a is then the symmetric half of
the total problem with �t � Tt � 0. The material
parameters are as specified previously while the
cohesive surface properties are taken to be
smax � 0.5 GPa, dn � 0.75 nm and �s � 6 nm
giving K0 � 0.283 MPa √m (fn � 1.02 J m�2).
This value of smax is about a factor of four smaller
than is representative of the theoretical strength of
aluminum. We employ this small value of smax so
as to decrease the plastic zone size and increase
the cohesive length in order to reduce the compu-
tation time and increase accuracy. Note that here
�n is the total normal separation of the cohesive
surface, �n � 2u2(x1,0), where x2 � 0 gives the
crack plane.

3. Numerical results

In the calculations presented here the applied
stress intensity factor KI was varied between Kmin

and Kmax as shown in Fig. 1c. The ratio R �
Kmin / Kmax and the difference �KI � Kmax�Kmin

are used to characterize the cyclic loading. Simula-
tions were carried out with a fixed R and the
applied �KI varied to get cycle-by-cycle crack
growth rates da/dN typically in the range 5×10�4

to 0.1 µm/cycle.

3.1. Fatigue at an interface

We present cyclic loading results for three
values of the load ratio, R, 0.1, 0.3 and 0.5. First
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the case with R � 0.3 is considered. Crack
advance (�a) versus time curves for a threshold,
intermediate and high value of applied �KI are
shown in Fig. 2a. Here and subsequently the crack
tip location is taken to be the point along the cohes-
ive surface where �n � 4dn.2 In the three cases
shown Kmax is higher than required for crack
growth to initiate under monotonic loading con-
ditions so a “burst” of crack growth occurs during
the first loading cycle. Subsequently, the incremen-

Fig. 2. (a) Time evolution of the crack growth and (b) time
evolution of the dislocation density for the interface crack
(R � 0.3).

2 In all the calculations presented here, the crack advance
(�a) identified by a specified amount of normal separation
always exceeded the crack advance based on that amount of
tangential separation.

tal cycle-by-cycle crack growth behavior is quali-
tatively different in the three cases shown in Fig.
2a. Approximately equal amounts of crack advance
per cycle corresponding to “steady” cycle-by-cycle
crack growth rates da / dN�5 × 10�4 and 0.03
µm/cycle occur for �KI / K0 � 0.756 and 1.05,
respectively. On the other hand, crack growth is
more intermittent at the intermediate value of
�KI / K0 � 0.938. At this intermediate �KI value,
small amounts of cycle-by-cycle crack growth are
intermingled with occasional spurts of relatively
large crack advance resulting in an average
da / dN�0.02 µm/cycle over the 36 cycles com-
puted. No measurable cycle-by-cycle crack growth
was obtained with �KI / K0 � 0.756.

The evolution of the dislocation density rdis (per
unit area in the process window) with time is
shown in Fig. 2b for the cases discussed above.
For �KI / K0 � 0.938 and 1.05 there is a clear
increase in the dislocation density with number of
loading cycles. Consequently, the dislocation
structures at the end and at the beginning of each
cycle differ. This is illustrated in Figs 3a and b
which show the dislocation structures around the
crack tip after the third and twelfth load peaks,
respectively for the case with �KI / K0 � 1.05.
The irreversibility of dislocation motion results in
an evolving dislocation structure with cyclic load-
ing so that the crack can grow to different lengths
during different loading cycles. On the other hand,
the very low crack growth rate with �KI / K0 �
0.756 results in nearly no cycle-by-cycle change

in dislocation density indicating that this loading
state is near the plastic shakedown limit. This is
consistent with the fact that no cyclic crack
advance is observed for �KI / K0 � 0.756.

Experimentally, slip traces in the wake of the
propagating fatigue crack are usually observed in
optical micrographs and are cited as evidence for
the alternating slip mechanism of fatigue crack
propagation, e.g. [8,19]. While the kinematics of
crack growth along an interface by a duplex slip-
type mechanism is unclear, fatigue striations on the
fracture surface and discrete slip traces on the
metal surface in the wake of the propagating crack
are also seen in cyclic crack growth at interfaces
[20–22]. In order to compare the predictions of the
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Fig. 3. Dislocation structures for interface crack (R � 0.3,
�KI / K0 � 1.05) at (a) the 3rd and (b) the 12th load peak as
marked in Fig. 2a. All distances are in µm. The crack opening
profiles (displacements magnified by a factor of 20) are plotted
below the x1-axis.

discrete dislocation simulations with these experi-
mental observations, the deformation pattern pre-
dicted by the discrete dislocation calculation is
illustrated by plotting slip contours. The calculated
displacement field is not continuous; dislocation
glide gives rise to a displacement jump across the
slip plane. However, to visualize the deformations,
the values of the displacements ui are evaluated on
a uniform rectangular grid with spacing 0.02 µm
(this grid is finer than the finite element grid). The
strain field �ij given by

�ij �
1
2�∂ui

∂xj

�
∂uj

∂xi
� (6)

is then obtained by numerical differentiation. The
slip g(a) is defined by3

g(a) � s(a)
i �ijm(a)

j (7)

where si
(a) is the tangent and mj

(a) is the normal to
slip plane a.

The total slip over the three slip systems, � �

	3

a � 1

|g(a)| is shown at the third and twelfth load

peaks in Figs 4a and b, respectively, for a loading
characterized by R � 0.3 and �KI / K0 � 1.05. At
the third load peak, contours of � in Fig. 4a show
strong evidence of slip traces emanating from the
original crack tip on the q � ± 60° slip planes. By
the twelfth load peak (Fig. 4b) discrete slip traces
have formed at intervals of �0.15 µm on the
q � 60° planes in the wake of the propagating
crack. These are very similar to those seen in the
experimental investigations of [20,22] for cyclic
crack advance at Al–Al2O3 interfaces.

The cyclic crack growth rate da/dN in the duplex
slip model scales with the slip band spacing.
Experimental observations of cyclic crack growth
at interfaces [20] and in single crystals [2], how-
ever, indicate that this spacing is generally larger
than da/dN and this difference increases with
decreasing �KI. In Fig. 4c contours of � at the 36th
load peak are shown for �KI / K0 � 0.938 (R �

3 The quantity g(a) is not the actual slip on slip plane a as
it includes contributions from dislocations gliding on all slip
systems. However, it is a convenient quantity for picturing the
deformation pattern.
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0.3): the crack advance in this case of �a�0.8 µm
is approximately equal to that after 12 cycles with
�KI / K0 � 1.05. The slip band spacing in Fig. 4c
is less uniform with an average value �0.2 µm.
Consistent with experimental observations, the slip
band spacing in both Figs 4b and c is greater than
the respective values of da/dN, with the ratio of
slip band spacing to the average da/dN being
approximately 2.7 and 8.6 for �KI / K0 � 1.05 and
0.938, respectively.

For comparison purposes, a calculation was car-
ried out with KI monotonically increasing. The
curve of KI versus crack advance �a is shown in
Fig. 5a. Here, as seen by Cleveringa et al. [35],
crack growth occurs in “spurts.” Contours of � at
the instant marked in Fig. 5a are shown in Fig. 5b.
This corresponds to a crack advance �a�0.8 µm
which is approximately equal to that achieved after
12 and 36 cycles for the cases plotted in Figs 4b
and c, respectively. Similar to the slip traces in Fig.
4, slip bands at discrete intervals also occur in Fig.
5b. The major difference here is that the higher
applied KI required to propagate the crack by 0.8
µm under monotonic loading results in an increase
in the distributed plasticity. The slip bands, which
tend to arrest the crack intermittently, are consist-
ent with the sporadic nature of the monotonic frac-
ture process [35]. Thus, even though the same
crack growth mechanism operates under both mon-
otonic and cyclic loadings, continued crack growth
occurs under cyclic loading at a value of Kmax for
which the crack would have arrested under mono-
tonic loading: the different dislocation structures at
the beginning and end of each loading cycle permit
progressive cyclic crack growth. To illustrate this
point Kmax/K0 versus the crack extension �a is
shown for two cyclic loading cases along with the
monotonic KI/K0 versus crack advance curve in
Fig. 5a. While the �KI / K0 � 0.938 (R � 0.3) cal-
culation was carried out for 36 cycles resulting in
a crack extension of �0.8 µm, the �KI / K0 �

Fig. 4. Contours of the total slip � � 	|g(a)| at (a) the 3rd

and (b) the 12th load peak for R � 0.3 and �KI / K0 � 1.05 as
marked in Fig. 2a, and (c) at the 36th load peak for R � 0.3
and �KI / K0 � 0.938. All distances are in µm. The crack open-
ing profiles (displacements magnified by a factor of 20) are
plotted below the x1-axis.
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Fig. 5. (a) The applied stress intensity factor KI/K0 as a func-
tion of the crack extension �a for monotonic loading of the

interface crack. (b) Contours of the total slip � � 	|g(a)| at the

point marked in Panel a. All distances are in µm. The crack
opening profile (displacements magnified by a factor of 20) is
plotted below the x1-axis.

0.972 (R � 0.1) calculation was carried out for 20
cycles resulting in �a�0.27 µm. In both cases,
continued crack growth occurs under cyclic load-
ing at a value of Kmax for which the crack would
have arrested under monotonic loading.

Cyclic loading calculations similar to those
described above were carried out for various values
of R and �KI. The results of those calculations are
summarized in Fig. 6a where we plot da/dN versus
the applied �KI. The da/dN values plotted are aver-
ages over the number of cycles computed in each
case. This was typically 20 cycles in the low �KI

Fig. 6. (a) The cyclic crack growth rate da/dN versus �KI/K0

and �KI
eff/K0 for the mode I cyclic loading of the interface

crack. The slopes of the curves marked correspond to the Paris
law exponents for the curves fitted through the numerical
results. (b) The normalized crack-opening stress intensity factor
Kop/Kmax versus �KI/K0.
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regime and at least 10 cycles in the high �KI

regime. Use of other definitions of da/dN was
explored, e.g. maximum or minimum crack growth
in any cycle computed; while such definitions
changed the numerical values of the da/dN versus
�KI relation, no change in the qualitative response
was seen.

The log(da/dN) versus log(�KI/K0) curves in
Fig. 6a show two distinct stages of fatigue crack
growth behavior. In the first regime, the average
crack growth per cycle is smaller than a lattice
spacing with the crack either remaining dormant
or growing at undetectable rates below a threshold
value �Kth. Just above the threshold, da/dN
increases sharply with �KI. Subsequently, there is
a “knee” in the log(da/dN) versus log(�KI/K0)
curve with da/dN increasing more gradually with
increasing �KI. This regime, which is referred to
as the Paris law regime, is characterized by a
power law relation between da/dN and �KI,

da
dN

��Km
I . (8)

For the simulations presented here we see from
Fig. 6a that the Paris law exponent m lies between
approximately 6 and 8 depending on the value of
R. As in [24], the fatigue threshold �Kth decreases
with increasing R. However, with increasing �KI

the dependence of the crack growth rates on R
diminishes and the log(da/dN) versus log(�KI/K0)
curves for the three R values in Fig. 6a are tending
to converge.

In our previous study [24] we found that the
fatigue threshold with an irreversible cohesive law
occurs at a constant effective threshold stress inten-
sity factor range �Kth

eff with the dependence of the
crack growth rates on R a result of crack closure.
When the crack faces are in contact, the stresses
in the vicinity of the crack tip are much reduced,
inhibiting dislocation nucleation and glide as well
as lowering the driving force for separation. As a
consequence, crack propagation tends to take place
only during the fraction of the fatigue loading cycle
in which the crack faces are separated, see for
example [37,38]. We thus proceed to quantify the
effect of crack closure and investigate the origin
of the dependence of da/dN on R in the post-thres-
hold as well in the threshold regime.

The unloading path specified for the normal trac-
tions in the irreversible cohesive law simulates sur-
face contact due to the formation of oxide layers
on the newly formed surfaces; locations along the
cohesive surface where the opening �n exceeds 4dn

but are under the action of compressive surface
tractions correspond to points where closure has
occurred. Closure in these calculations occurred in
a similar manner to that observed in [24]. On
unloading from the maximum load, the surfaces at
the original location of the crack tip (x1 � 0) first
come into contact. Further reduction in the applied
KI results in this contact zone spreading from the
original crack tip to the current location of the
crack tip. Complete closure with contact of the
crack faces at the current location of the crack tip
occurs at an applied stress intensity factor KI �
Kcl. Upon reloading, the crack faces first separate

at the current location of the crack when KI �
Kop. Continued loading results in the contact zone

retracting towards the original location of the crack
tip until finally the crack opens completely. In the
simulations here Kcl�Kop. However, consistent
with the intermittent nature of the cyclic crack
advance in most of the calculations, Kop varies sub-
stantially from cycle to cycle in any given calcu-
lation. The average values of Kop over the number
of cycles computed are shown in Fig. 6b: for
R � 0.1 and 0.3 there is a general trend for
Kop/Kmax to decrease with increasing �KI, which is
consistent with experimental observations of crack
closure in fatigue in aluminum by Ritchie et al. [4].
There is no clear trend for Kop for the calculations
with R � 0.5. This may be because computations
for R � 0.5 were performed only for relatively low
values of applied �KI as the large plastic zone sizes
associated with R � 0.5 limited the calculations
that could be carried out.

The effective stress intensity range �KI
eff is

defined as

�Keff
I � �Kmax�Kop for Kmin � Kop

�KI for Kmin	Kop

(9)

Using this prescription, the da/dN versus �KI data
are replotted in Fig. 6a as da/dN versus �KI

eff. To
within numerical scatter, all the data collapses onto
a single master curve with no dependence on R.
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This indicates that the R dependence of the crack
growth rate is a crack closure effect and that the
crack growth rate is governed by the effective
value of �KI over the range investigated here.

Crack closure as modeled through the irrevers-
ible cohesive relation has a profound effect on the
crack growth behavior. The extent of crack closure
is governed by �s which represents the asymptotic
value of the oxide layer thickness formed on the
newly created surface. The effect of �s on the
crack growth behavior is shown in Fig. 7, where
crack advance versus time curves are plotted for
�s � 4dn, 8dn and �s→
 for a loading charac-
terized by R � 0.1 and �KI / K0 � 1.062. With
�s→
 the oxide layer thickness is continuously
increasing with crack opening displacement. This
results in da/dN increasing with the number of
cycles and a “steady” da/dN is not achieved.
Decreasing �s reduces the irreversibility in the
cohesive relation with the cohesive relation becom-
ing completely reversible for �s � 0. Thus, reduc-
ing �s has the effect of decreasing the cyclic crack
growth rates. From Fig. 7 we see that the crack
advance versus time curves are not very sensitive
to the choice of �s in the range 4dn to 8dn with a
“steady” da/dN being achieved in both cases. This
range of �s is in line with the oxide layer thick-
nesses of 2–6 nm reported for aluminum under
ambient conditions [31]. Decreasing �s below 4dn

Fig. 7. Time evolution of the interface crack growth
(R � 0.1, �KI / K0 � 1.062) for three values of �s.

results in very low crack growth rates similar to
those encountered with a fully reversible cohesive
law while increasing �s above 8dn gives accelerat-
ing crack growth.

3.2. Fatigue in a single crystal

The single crystal analyzed is characterized by
the same slip plane geometry and nucleation source
and obstacle distribution as used to characterize the
metal in the metal–ceramic interface problem, thus
representing the fatigue behavior of that material.
Symmetry about the crack plane is prescribed.
Since qualitative features of the mode I crack
growth behavior in the homogeneous single crystal
were found to be similar to those of the interface
crack, namely intermittent crack growth at inter-
mediate values of �KI and more steady cycle-by-
cycle crack growth at threshold and high values of
�KI, only results for the da/dN versus �KI behavior
are presented.

The da/dN versus �KI data for R � 0.3 is plot-
ted in Fig. 8a. As in Fig. 6a, the da/dN values plot-
ted are averages over the number of cycles com-
puted. This was generally 20 and 10 for low and
high values of �KI, respectively. Again, there are
two distinct regimes of behavior: a steeply rising
log(da/dN) versus log(�KI/K0) curve in the thres-
hold regime followed by a more gradual slope in
the Paris regime. The Paris law exponent m in this
case is �4.4 (m � 2 to 4 is typical for ductile met-
als, e.g. [4]). The crack closure stress intensity fac-
tor is plotted in Fig. 8b as a function of the applied
�KI. As in the interface crack calculations, Kop is
taken as the average value over the number of
cycles computed for each loading. The values of
Kop/Kmax decrease with �KI in line with the experi-
mental findings of Ritchie et al. [4]. The cyclic
crack growth rate da/dN is also plotted in Fig. 8a
as a function of �KI

eff, with �KI
eff calculated using

Eq. (9). The effect of crack closure is more pro-
nounced at the lower values of �KI so that �Kth

eff

is much less than �Kth and the cohesive relation
may be overpredicting closure in the near-thres-
hold regime. Crack closure also results in an
exponent m�2.8 for the modified Paris relation

da
dN

�(�Keff
I )m. (10)
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Fig. 8. The cyclic crack growth rate da/dN versus �KI/K0 and
�Keff

I/K0 for the mode I cyclic loading of the single crystal
(R � 0.3). The slopes of the curves marked correspond to the
Paris law exponents for the curves fitted through the numerical
results. (b) The normalized crack opening stress intensity factor
Kop/Kmax versus �KI/K0 for R � 0.3.

For comparison purposes the “best-fit” da/dN
versus �Keff

I/K0 curve for the interface crack from
Fig. 6a is replotted in Fig. 8a. The effect of the
mode mixity at the interface is to increase the
fatigue threshold of the interface crack but to
reduce its resistance to cyclic crack growth at
higher values of applied �KI. These conclusions
are expected to be strongly dependent on the
degree of mode mixity and hence affected by the

cohesive properties and the boundary conditions
applied.

Rather uniformly spaced slip traces at q � 60°
in the wake of the propagating fatigue crack are
also seen for the single crystal. Fig. 9 shows con-
tours of � at the twelfth load peak for the case
with R � 0.3 and �KI / K0 � 1.19. These slip
traces closely resemble those for the interface
crack in Fig. 4. Moreover, this deformation field is
similar to that in the experiments of Laird and
Smith [8] and Neumann [19] for cyclic crack
growth in metals. Note the high values of � parallel
to the crack resulting from dislocation activity on
the q � 0° slip planes (Fig. 9).

4. Discussion

In the calculations here and in [24,35], the frac-
ture behavior is an outcome of the interplay
between the cohesive and plastic flow properties.
Under monotonic loading conditions, with a suf-
ficiently low density of dislocation sources, only
isolated dislocations are generated and crack
propagation takes place in a brittle manner. When
ample nucleation sources are available and the

Fig. 9. Contours of the total slip � � 	|g(a)| at the 12th load

peak for a loading characterized by R � 0.3 and �KI / K0 �
1.19 in the case of the single crystal. All distances are in µm.

The crack opening profile (displacements magnified by a factor
of 20) is plotted below the x1-axis.
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obstacle density is sufficiently low, the dislocations
strongly relax the near-tip stresses, resulting in
continued crack tip blunting without crack propa-
gation. In these circumstances, ductile fracture
would eventually take place by a process of void
nucleation, growth and coalescence. The circum-
stances considered in this paper fall in an inter-
mediate regime where, under monotonic loading,
decohesion occurs in the presence of plastic defor-
mation because of the high local stress concen-
trations ahead of the crack that arise from the near-
tip dislocation structures. Under cyclic loading
conditions, the increasing dislocation density near
the crack tip, with the associated increase in stress
level, is what allows the decohesion mechanism to
operate at lower imposed driving forces than are
needed under monotonic loading conditions.

Based on the experimental work of Laird and
Smith [8] and Neumann [19], fatigue crack growth
in ductile metals is often presumed to occur by an
alternating slip mechanism which is a deformation-
controlled phenomenon that does not require high
stresses. By contrast, in our framework fracture is
both a deformation- and a stress-governed
phenomenon and takes place by a mechanism that
is possible under both monotonic and cyclic load-
ing conditions. Crack propagation under mono-
tonic loading occurs in “spurts” with slip traces on
the q � 60° slip planes being left behind at rather
uniform intervals in the wake of the propagating
crack. This is consistent with the experimental
observations of Kysar [39] for small amounts of
monotonic crack growth along a copper–sapphire
interface. In our calculations, more or less uni-
formly spaced slip traces occur on the q � 60° slip
planes under monotonic loading and in the wake
of a propagating fatigue crack, and the slip band
spacings are about the same in the monotonic and
cyclic loading calculations. The present calcu-
lations suggest that striations are not generally
observed under monotonic loading because obser-
vations are usually made after fracture when more
diffuse plastic deformation has occurred and sme-
ared out the slip bands.

Experimentally there is a wealth of evidence
relating to fatigue striations: these striations are
ripples seen on the fatigue fracture surface of most
ductile metals. In our calculations, we obtain fairly

uniformly spaced slip bands at q � 60° which are
very similar to the slip traces seen on metal sur-
faces in the wake of a propagating fatigue crack.
These slip bands leave slip steps on the crack sur-
face, giving rise to a staircase-like fracture surface
(the crack profiles in Figs. 4 and 9). The striations
that emerge in our calculations most closely
resemble type B striations according to the classi-
fication scheme of Forsyth [40]. Indeed, experi-
mental observations of Nix and Flower [41] show
that type B striations result from atomic separation
followed by crack tip blunting and dislocation
nucleation with the slip band spacing correspond-
ing to that of the surface striations. The mechanism
of striation formation in our calculations is in
remarkable accord with these observations.

Other types of striations (type A according to
the Forsyth [40] classification scheme) are usually
associated with off-plane crack growth. While it is
possible in principle to allow off-plane crack
growth in the cohesive surface framework, that is
not accounted for in the calculations here. Other
limitations that affect the prediction of striations
include: (i) the calculations were carried out for at
most 36 cycles while experimental observations
are usually made after at least a few hundred
cycles; and (ii) in our small-strain formulation
stress concentrations due to surface steps are not
accounted for, which may affect the evolution of
the surface profile. Nevertheless, the present calcu-
lations provide a possible rational for the minimum
striation spacing of �0.1–0.15 µm seen for a wide
variety of materials [42]; namely that the minimum
striation spacing is set by the interaction of the
stress fields of the dislocations comprising the
slip bands.

In our previous study on near-threshold fatigue
behavior [24] we presented cyclic crack growth
calculations with a reversible cohesive relation as
may occur in vacuum. Crack growth in those cal-
culations was solely due to the inherent irreversi-
bility of dislocation motion. Striations are typically
not seen for fatigue loading under high vacuum
conditions, e.g. [43]. Fatigue calculations with a
reversible cohesive relation were not carried out
here as the high �KI values (with correspondingly
high dislocations densities) required to get suf-
ficient crack growth made such computations pro-
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hibitively time-consuming. It is worth noting, how-
ever, that crack closure did not occur in the near-
threshold calculations in [24] when a reversible
cohesive relation was used and that Nix and Flower
[41] suggest that striations are closure induced.

The form of the log(da/dN) versus log(�KI)
curve seen experimentally, with a threshold and a
Paris law regime, is captured in our analysis. In
the near-threshold regime the log(da/dN) versus
log(�KI) curve is steeply increasing as a significant
proportion of the driving energy is going into the
work of separation with only small amounts of
plastic dissipation in the bulk material. With
increasing �KI the plastic zone size increases
resulting in increased plastic dissipation. This gives
rise to the knee in the log(da/dN) versus log(�KI)
curve with the Paris law exponent m decreasing as
the ratio of the plastic dissipation to the work of
separation increases. This suggests that when the
plastic dissipation is small compared to the work
of separation, there is a high Paris law exponent
and fatigue is essentially a cleavage process as in
intermetallics, e.g. [44,45], and nickel-based super-
alloys [6]. On the other hand, in ductile metals the
plastic dissipation is typically very large compared
to the work of separation which would tend to
reduce the Paris law exponent. Our model is cap-
able of capturing the wide range of Paris law
exponents seen experimentally through the interac-
tion between the independently specified cohesive
and material properties. It is expected that the Paris
exponent m will approach 2 in the limit that plastic
dissipation completely dominates, since in that
limit the only relevant length scales, the size of the
cyclic plastic zone and the crack opening displace-
ment, scale as (�KI)2.

The calculations presented here were carried out
for relatively low values of �KI and hence may
pertain to a regime approaching Paris law behavior.
In Fig. 6a the log(da/dN) versus log(�KI) curves
tend to converge but there is still an R dependence
for the crack growth rates over the entire range of
�KI investigated here. The R dependence of the
crack growth rates in our calculations is a crack
closure effect with all the data for the interface
crack collapsing onto a single curve when the Paris
law is expressed in terms of �KI

eff (Fig. 6a). The
crack closure stress intensity factor Kop/Kmax as

modeled through our phenomenological irrevers-
ible cohesive relation decreases with increasing
�KI in line with the experimental findings of Rit-
chie et al. [4]. For a high applied �KI, �Keff

I �
Kmax�Kop��KI and thus we expect that the crack

growth rate will have negligible R dependence in
line with true Paris law behavior. It is worth
emphasizing that while the calculations capture the
observed closure behavior qualitatively, the present
analysis has several limitations in this regard. For
example, our phenomenological cohesive relation
is not based on a quantitative consideration of oxi-
dation kinetics and the small-strain formulation
neglects changes in the surface geometry due to
slip steps which can give rise to roughness-induced
crack closure. These limitations can be addressed
through ab initio calculations such as those
recently undertaken by Jarvis et al. [46], which
could provide the basis for a more accurate cohes-
ive relation, and through a finite strain discrete dis-
location formulation which accounts for
geometry changes.

An indication of how the discrete dislocation
predictions compare with what is observed exper-
imentally is shown in Fig. 10 where numerically
computed and experimental curves of da/dN and

Fig. 10. A comparison between the predicted cyclic crack
growth rate and experimental measurements of McNaney et al.
[20] for the mode I cyclic loading of the interface crack
(R � 0.1). The experimental values of �KI from McNaney et
al. [20] and the calculated values of �KI are each normalized
by the corresponding threshold value, �Kth. Also shown in the
figure is a comparison between the predicted and measured stri-
ation spacings.
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striation spacing versus �KI are shown. The
experimental data are taken from McNaney et al.
[20] and, to provide a basis for the comparison
between the numerical and the experimental data,
each value is normalized by its threshold value,
�Kth. The experimental measurements in [20] were
carried out using four-point bend Al2O3–Al–Al2O3

sandwich specimens for a load ratio of R � 0.1
and for an applied �KI ranging from approximately
1 to 10 MPa √m (only the portion of the data corre-
sponding to the computed range is shown in Fig.
10). The sandwiched metal layer was made from
high-purity (99.999%) polycrystalline Al and its
thickness varied between 100 and 500 µm.
McNaney et al. [20] found that the fatigue crack
growth rates along the Al–Al2O3 interfaces were
reasonably independent of the Al layer thickness.
The numerical simulations, in contrast, are for Al
single crystals bonded to a rigid substrate in small-
scale yielding. Thus, the comparison is of dissimi-
lar situations, but we have not found da/dN versus
�KI data for fatigue crack growth along a single-
crystal metal–ceramic interface. The predicted
Paris law exponent of about 6 is greater than the
measured exponent of �1.8. Factors contributing
to the more brittle fatigue crack growth in the cal-
culations include: (i) the bonding in the McNaney
et al. [20] experiments may be stronger than that
modeled here; (ii) the material parameters used in
the calculations, i.e. the strength and density of the
dislocation sources and obstacles, may not be rep-
resentative of the particular alloy in the experi-
ments in [20]; (iii) a high loading rate is used in
the calculations to reduce the computing time and
this acts to decrease the amount of plastic dissi-
pation; (iv) grain boundary interactions which
retard crack growth and increase plastic dissipation
occur in the experiments but not in the single-crys-
tal calculations; (v) crack tip blunting effects are
not taken into account in our small-strain analyses;
and (vi) crack closure which plays a significant role
for R � 0.1 may not be modeled accurately as dis-
cussed above. A comparison between the predicted
striation spacings and the measurements of
McNaney et al. [20] is also shown in Fig. 10. Con-
sistent with the experimental findings, the numeri-
cal calculations predict striation spacings that
exceed the crack growth increment per cycle and

show less dependence on �KI than the crack
growth rate. However, the predicted striation spac-
ings are greater than the experimental measure-
ments which may be due to the reduced plasticity
and more brittle nature of fatigue in the calcu-
lations.

5. Concluding remarks

We have carried out analyses of fatigue crack
growth along metal–ceramic interfaces and in sin-
gle crystals under remote mode I plane strain con-
ditions. Plastic flow arises from the collective
motion of large numbers of discrete dislocations
and the fracture properties are embedded in a
cohesive surface constitutive relation. The only dif-
ference between the boundary problem formu-
lations for monotonic and cyclic loading is the pre-
scribed time variation of the remote stress
intensity factor.

� Crack growth occurs under cyclic loading con-
ditions when the driving force is smaller than
that needed for the crack to grow under mono-
tonic loading conditions.

� Two distinct regimes of behavior emerge nat-
urally from the calculations: a steeply rising
log(da/dN) versus log(�KI) curve in the thres-
hold regime followed by a more gradual slope
in the Paris regime. This change in slope is due
to the increased plastic dissipation at the higher
�KI values.

� Steady cycle-by-cycle crack growth occurs for
near-threshold and high values of applied �KI

while crack growth is more intermittent at inter-
mediate values of the applied �KI.

� Striations emerge as traces of concentrated slip
on the newly created free metal surface for
cracks propagating along metal–ceramic inter-
faces as well as for cracks in single crystals.

� The striation spacing is of the order of the
amount of crack growth per cycle in the Paris
law regime and greater than the amount of crack
growth per cycle in the near-threshold regime.

� The calculations here and in [24] rationalize a
wide range of observed fatigue crack growth
behavior within a unified framework.
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