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ABSTRACT: Two new models are described for a composite consisting of a nonlinear viscous matrix reinforced
by rigid particulate inclusions: (1) An analytical plane strain solution for a uniform regular array of rigid
hexagonal particles separated by a nonlinear viscous material; and (2) a numerical upper-bound solution using
Hashin’s composite sphere model for a composite consisting of rigid inclusions in a nonlinear viscous matrix.
Suquet’s closed-form solution for the nonlinear composite, obtained by transforming Hashin’s linear solution, is
also examined. Predictions of all models are compared with experimental measurements from uniaxial com-
pression tests on composites consisting of bitumen reinforced with various volume fractions of aggregate.
INTRODUCTION

Bituminous mixes (or asphalts) used in ‘‘flexible’’ pave-
ments are complex materials consisting of a high volume frac-
tion of graded aggregate, air voids, and bitumen. The research
described in this paper is part of a larger project to understand
the deformation behavior of asphalt road surfaces. As a first
step toward understanding the deformation of real mixes, the
behavior of idealized mixes (with simple microstructures) is
investigated here.

Cheung and Cebon (1996a) found that for most practical
operating conditions bitumen is a nonlinear viscous material
with a constitutive law (see the section entitled Experiments
on Idealized Bituminous Mixes for further details)

n21
«̇ 3 s S9ij e ij= (1)S Dε̇ 2 s s0 0 0

where = reference strain rate; s0 = reference stress; se =ε̇0

von Mises equivalent stress; = deviatoric stress tensor; ˙S9 «ij ij

= strain rate tensor; and n = stress sensitivity (power law in-
dex).

Cheung and Cebon measured the properties of a 50 pen
bitumen and found it to have a power law index of n = 2.3.
[Pen is a standard index that describes the penetration char-
acteristics of bitumen. For details see Shell bitumen handbook
(Whiteoak 1990).] Because the aggregate particles in the as-
phalt are very stiff relative to the bitumen matrix [at 207C the
rate of Young’s modulus of the aggregate to the initial modulus
of bitumen is '100 (Cheung 1995)], asphalt can be modeled
as a nonlinear viscous composite, with bitumen reinforced by
a high volume fraction of rigid particles.

Work on modeling the deformation behavior of nonlinear
viscous materials reinforced by rigid inclusions was reviewed
by Deshpande (1997), who found that existing models fall into
the following three categories:

1. Homogenization formulas for the properties of periodic
composites.

2. Estimates for the effective properties of ad hoc models
of composites.

3. Variational boundaries for the properties of random com-
posites.

The homogenization approach most often involves construc-
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tion of a unit cell and solution of the resultant boundary value
problem by finite-element (FE) analysis. The ad hoc models
[e.g., Duva’s (1984) differential self-consistent analysis] gen-
erate approximate relationships for nondilute composites based
upon known results for dilute composites. An FE calculation
for rigid spherical inclusions in a nonlinear viscous matrix was
carried out by Bao et al. (1991). They found that their results
were very similar to Duva’s differential self-consistent esti-
mate. Also, Deshpande (1995) showed that most upper and
lower variational bounds for the properties of asphaltic com-
posites are generally too far apart to be of any practical use.

In this paper two models are considered for the deformation
of idealized asphalt mixes (i.e., bitumen with high volume
fractions of particulate inclusions):

1. A uniform array of rigid hexagonal particles separated
by a nonlinear viscous matrix.

2. An upper-bound solution using Hashin’s (1962) com-
posite sphere model for a composite consisting of rigid
inclusions randomly distributed in a nonlinear viscous
matrix.

The theoretical results are compared with uniaxial com-
pression tests on idealized bitumen composites (i.e., bitumen
reinforced with uniformly graded sand or single sized glass
beads) previously performed by Deshpande (1995).

HEXAGONAL ARRAY MODEL

In this section a plane strain solution for a nonlinear viscous
material reinforced by a regular array of rigid hexagonal par-
ticles is presented. Hexagonal particles were chosen because

1. Hexagons can be arranged to give a high volume fraction
of inclusions (more than that from a packing of single
sized spheres).

2. The parallel ‘‘flat plate’’ contacts separating the hexa-
gons can be analyzed easily and represent a limiting case
deformation mechanism, consisting of flow without dam-
age or void growth.

Drucker (1964) performed a similar analysis for a matrix
phase consisting of an ideally plastic or a linear viscous ma-
terial. Bao et al. (1991) repeated this analysis. The general
nonlinear viscous solution presented here agrees with
Drucker’s solution in the two limiting cases.

Compatibility

The microstructure to be analyzed is shown in Fig. 1. An
infinite, regular, two-dimensional (2D) array of rigid hexago-
nal prisms with side 2L, separated by continuous thin films of
a nonlinear viscous material of thickness 2h1 or 2h2, is sub-
jected to remote biaxial stresses and The rectangle` `S S .1 2
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FIG. 1. Regular 2D Array of Hexagonal Prisms Subjected to
Remote Stresses and` `S S1 2

FIG. 2. Repeating Unit of Fig. 1 Shown with Local Boundary
Velocities and Stresses

ABCD represents a unit cell, which is chosen such that the
sides AB, BC, CD, and DA are all axes of symmetry. A con-
sequence of this is that the hexagonal prisms are not able to
rotate, and as a result the film thickness in each parallel chan-
nel remains uniform as the array deforms. Fig. 2 shows the
velocities associated with the boundaries. ux and uy are the
relative horizontal and vertical velocities of the two prisms,
respectively (i.e., the motion of point B relative to fixed point
D). These can be related to the velocity components u1 and u2

(u1 is the velocity of C relative to D and u2 is the relative
normal velocity of the diagonal planes of the hexagons) by

u = u (2)x 1

2u 2 u2 1
u = (3)y

3Ï

For thin films the resulting remote strain rates in the hori-
zontal and vertical directions are

u1`Ė = (4)11
L 3Ï

2 u 2 u /22 1`Ė = (5)22 S D3 L 3Ï

The volume of the shaded region in Fig. 1 is given by
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V ' Lh 1 2Lh (6)1 2

where higher-order terms in h have been neglected because
the films are thin. From symmetry considerations it can be
seen that there is no flow out of this volume. Because the
matrix material is incompressible [according to the constitutive
law given by (1)]

˙ ˙V̇ = L(h 1 2h ) = 0 (7)1 2

This constrains the relationship between the two strain rates.
Furthermore, the velocities u1 and u2 are related simply to the
rates of change of film thicknesses h1 and h2 by

ḣ = u (8)1 1

˙2h = u (9)2 2

Hence from (5) and (7)

L 3Ï `˙ḣ = E (10)2 222

`˙ḣ = 2L 3E (11)Ï1 22

Equilibrium

Because the films are thin, the shear forces in the bitumen
films can be assumed to be much smaller than the normal
forces [see Cheung and Cebon 1996b) for details of thin film
behavior]. Therefore the hexagonal prisms can be assumed to
be free to slide. Denoting and as the mean stressesm ms s1 2

transmitted across the vertical and diagonal boundaries, re-
spectively (Fig. 2), equilibrium requires that (Cocks and Ashby
1982)

1m ` `s = (3S 2 S ) (12)1 1 22

m `s = S (13)2 2

It should be noted that the stress-concentration at the corners
has been ignored.

Governing Equations for Thin Film Behavior

Cheung and Cebon (1996b) showed that deformation char-
acteristics of a thin film of bitumen under plane strain condi-
tions is given by

(n11)/n 1/n˙s 1 P n A uhu/hn 0 1/n ˙= (n 1 2) sign(h)S D S D S D˙s 2n 1 1 ε30 0Ï
(14)

where sn = normal stress; P0 = pressure at the ends of the
contact film; A = aspect ratio of the contact = L/h; and h =
half film thickness. The sign convention used here is tension
1ve, and compression 2ve.

FE analysis of the thin film compression of bitumen per-
formed by Cheung and Cebon showed that the analytical so-
lution for the thin film behavior given earlier is accurate for
A $ 5. For aspect ratios < 5 the one-dimensional (1D) flow
assumption made in the analytical solution is not satisfactory
and the FE analysis predicts that the films are stiffer than that
calculated from (14).

The relationship between the volume fraction of hexagons
f and film aspect ratio A for an initially regular array is

1 fÏ
A = (15)S D

3 1 2 fÏ Ï

For an array consisting of, for example, 64% by volume of
hexagonal prisms, the aspect ratio A ' 2.3 [64% by volume



corresponds to the dense random packing density of single size
spheres (Scott and Kilgour 1969)]. A correction factor obtained
from the FE analysis (Cheung and Cebon 1996b) can be added
to correct (14) in such cases [a graph showing this correction
factor versus aspect ratio is given in Cheung and Cebon
(1996b)].

Overall Constitutive Law

There are two typical contacts in the array, namely, those
represented by the vertical and diagonal boundaries in Fig. 2.
Substituting the stress at these contacts [(12) and (13)] into
the deformation law given by (14) and subtracting the resulting
equations to eliminate P0 (the pressure at the vertices between
the hexagons) gives

(n11)/n
` `3 S 2 S n 11 2 1/n= (n 1 2)S D S D S D2 s 2n 1 1 30 Ï

(n11)/n 1/n˙L uh u1 ˙? sign(h )1FS D S Dh h1 1

(n11)/n 1/n 1/n˙L uh u 12 ˙2 sign(h )2S D S D G S D˙h h ε2 2 0 (16)

It should be noted that this ignores most of the complexity of
the flow at the channel intersections.

Eliminating and using (10) and (11) gives˙ ˙h h1 2

` `S 2 S 2n 12 1 1/n= (n 1 2)S D S Ds 3(2n 1 1) 30 Ï
(n12)/n 1/n (n12)/n 1/n

`˙L 1 L uE u22 `˙? 1 sign(E )22FS D S D S D G S D˙h 2 h ε1 2 0 (17)

It should be noted that 2 will always have the same` `S S2 1

sign as and vice versa. The constitutive law can then be`Ė22

written as
n

`Ė 1 uSu22 = sign(S) (18)S Dε̇ S s0 0

where S = 2 = measure of the deviatoric stress; and` `S S2 1

n n
2n 1

S = (n 1 2)S D S D3(2n 1 1) 3Ï
(n12)/n 1/n (n12)/n n

L 1 L
? 1FS D S D S D Gh 2 h1 2 (19)

The parameter S is known as the ‘‘stiffening effect.’’ In the
case of uniaxial loading (i.e., either = 0 or = 0), S is` `S S2 1

the ratio of the steady-state strain rate of the matrix material
(pure bitumen) to the strain rate of the array, under the same
uniaxial stress. It can be seen from (19) that the value of S
predicted by this analysis is a function of the microstructural
parameters only and not a function of the stress state.

Evolution of Constitutive Law

An approximate large strain solution for the deformation of
the array is described in this section. Assume that the array
starts from an initially regular geometry with h1 = h2 = h0 (i.e.,
L/h1 = L/h2 = L/h0 = A0, where A0 is the initial aspect ratio).
As the array deforms, the film thickness h1 and h2 change, and
hence the constitutive law varies with strain.

The microstructural parameter h2 varies as

L L
= (20)th2 ˙h 1 h dt0 2E

0

FIG. 3. Variation of Stiffening Effect S with Strain in 2-Direc-
tion (n = 2.3)

Substituting for from (10) givesḣ2

L A A0 0= = (21)th2 33A ÏÏ 0 ``˙ 1 1 A E1 1 E dt 0 2222E 22 0

Because the matrix material is incompressible, (6) can be
rewritten as

h 3 2h1 2= 2 (22)
L A L0

Eqs. (18), (19), and (22) can be used to predict the evolution
of the constitutive law with compressive strain in the 2-direc-
tion for the array of hexagonal prisms [it is assumed that the
equilibrium conditions given by (12) and (13) still hold]. Fig.
3 shows the variation of the stiffening effect S with strain for
various volume fractions (or initial aspect ratios A0) of hex-
agonal prisms in a bitumen matrix with n = 2.3. It can be seen
that, for compression in the 2-direction, initially there is a
small drop in stiffness of the array. This is because as h1 in-
creases the pressure at the vertices P0 decreases. The mix then
deforms at essentially a constant rate (stiffening effect) until
the strains reach ;0.1 (10%). The stiffening effect then in-
creases rapidly (deformation rate decreases) as the diagonal
films become very thin (h2 → 0) and very stiff → `).m(s2

COMPOSITE SPHERE MODEL

In the previous section a composite with a particular uni-
form microstructure was analyzed. In most realistic cases for
particulate composites, the microstructure is random. Hence
only bounds on the properties of the composite can be ob-
tained using the limited information available about the com-
posite, such as the volume fraction of the phases, etc. In sev-
eral cases of practical importance, inclusions of one phase
(e.g., Phase 1) are embedded in another phase (Phase 2). A
model morphology accounting for this information was con-
structed by Hashin (1962). It consists of an assemblage of
composite spheres. In this section an upper-bound solution is
derived using Hashin’s model. A numerical calculation tech-
nique is employed to calculate the stiffening effect for a com-
posite consisting of rigid inclusions in a nonlinear viscous ma-
trix.

An approximate extension of Hashin’s lower bound was
given by Suquet (1993) for rigid inclusions in a nonlinear vis-
cous matrix. This bound was found to agree well with ex-
perimental data only for a low volume fraction of rigid inclu-
sions. Because a model is being developed in this paper for
asphalt that contains '75–85% aggregate, only Hashin’s up-
per bound is considered.
JOURNAL OF ENGINEERING MECHANICS / MARCH 1999 / 257



FIG. 5. Composite Sphere

FIG. 4. Hashin’s Assemblage of Composite Spheres

Hashin’s Composite Sphere Model

Hashin (1962) described a composite consisting of a matrix
with embedded inclusions by the composite sphere assemblage
shown schematically in Fig. 4. The broken curves, drawn in
Fig. 4, define the region of the matrix phase associated with
each particle. The ratio a/b is taken to be constant for each
composite sphere. Consequently a gradation of particle sizes
is required to provide a space-filling configuration.

The unit cell of this model is the composite sphere shown
in Fig. 5. It is defined to have (a/b)3 = f = volume fraction of
the inclusion phase. Hashin (1962) showed that upper and
lower bounds on the elastic modulus of the composite can be
obtained by applying either uniform displacement or uniform
stress fields, respectively, on the outer surface AR of the com-
posite sphere. Although he obtained the exact solution for the
bulk modulus of a two-phase linear composite (i.e., the bounds
coincided), it was only possible to get bounds for the shear
modulus.

Nonlinear Composite Sphere Model

In this section Hashin’s composite sphere upper bound for
the ‘‘shear modulus’’ is developed for a composite consisting
of a nonlinear viscous matrix reinforced by rigid inclusions.
The ‘‘bulk modulus’’ is trivial (`) as both phases are incom-
pressible.

Analytical solutions for the velocity field in a composite
sphere consisting of a rigid sphere surrounded by a nonlinear
viscous material, subject to uniform surface shear straining, do
not exist. Hence a numerical solution using a technique sug-
gested by Budiansky et al. (1982) is used here.

Consider a rigid particle of radius a in an incompressible
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nonlinear viscous matrix of radius b as illustrated in Fig. 5.
The outer surface AR is subjected to uniform straining vi =

where vi is the velocity vector; and the macroscopic˙ ˙E x , Eij j ij

strain rate tensor. Because the body is incompressible, only
axisymmetric straining can be considered without the loss of
generality. Hence the body is subjected to a distortional strain
rate given by

2˙ ˙ ˙E = (E 2 E ) (23)33 113

where = macroscopic axial strain rate; and = macro-˙ ˙E E33 11

scopic radial strain rate.
The minimum principle for velocities stated by Hill (1956)

is used to find approximate Rayleigh-Ritz solutions. The ve-
locities vi minimize the stress potential F given by

1
˙F = W(ε) dV (24)EuV u VR

where
˙ (n11)/nε ˙n εe˙ ˙W(ε) = s d« = s ε (25)ij ij 0 0E S D˙n 1 1 ε00

and
1/2

2
˙ ˙ ˙ε = « « (26)e ij ijS D3

It should be noted that the repeated indices denote summation
(tensor notation).

The usual admissibility conditions

1
˙v = 0; « = (v 1 v ) (27a,b)i,i ij i, j j,i2

are imposed. The comma denotes differentiation with respect
to that variable. The stress tensor is then given by the consti-
tutive relation

F
S = (28)ij ˙Eij

Numerical Solution Formulation

A general representation of the incompressible, axisymme-
tric velocity field in spherical coordinates (r, u, f) can be
written in terms of a stream function x(r, u) as

22 21v = 2r (sin u) (x sin u) (29)r ,u

21v = r x (30),ru

where vr and vu = velocities in the radial and tangential direc-
tions, respectively.

This definition of the velocity field always ensures incom-
pressibility (i.e., = 0). For a field that is symmetric aboutvi,i

u = p/2, x can be expressed as

x(r, u) = P (cos u) f (r) (31)k,u kO
k=2,4,. . .

where Pk(cos u) = Legendre polynomial degree k. The un-
known functions fk(r) that must be chosen to minimize F in
(24) are approximated by a finite number of terms using

`

(i) if (r) = A r (32)k kO
i=2`

where amplitudes are to be determined in the minimiza-(i)Ak

tion.
Love (1944), Sternberg et al. (1951), and Hashin (1962)

presented the exact solution to the preceding problem for the



case when a linear elastic (or linear viscous) material sur-
rounds the rigid inclusion. In these cases, the stream function
x has the form

(22)A2(5) 5 (3) 3 (0)x(r, u) = P (cos u) A r 1 A r 1 A 1 (33)2,u 2 2 2S D2r

where = constants, derived from the bound-(5) (3) (0) (22)A , A , A , A2 2 2 2

ary conditions. The trial function fk(r) must be chosen in the
current case, so that it at least incorporates this exact linear
solution. Hence the minimum number of terms representing
fk(r) must be

5

(i) if (r) = A r (34)k kO
i=22

From (29) and (30)
22v = k(k 1 1)P (cos u)r f (r) (35)r k kO

k=2,4,. . .

21v = P (cos u)r f (r) (36)k,u k,ru O
k=2,4,. . .

The velocity field previously given does not automatically
satisfy the boundary conditions on A0 and AR. Hence the am-
plitudes are not free to take arbitrary values but are con-(i)Ak

strained at the inner and outer surfaces of the matrix such that

v = v = 0 at r = a for all u (37)r u

˙v = E x on A (38)i ij j R

For axisymmetric shear straining the boundary condition on
AR reduces to

2 ˙v u = (3 cos u 2 1)Eb (39)r b

3 ˙v u = 2 sin 2uEb (40)bu 2

Expressions for the associated strain rates are derived from
the velocity field using

21 21˙ ˙ε = v ; ε = r v 1 r v (41a,b)r r,r u,u ru

1 21 21˙ ˙ ˙ ˙ε = 2ε 2 ε ; ε = (r v 2 r v 1 v ) (41c,d )r ru r,u u,rf u u2

For convenience the amplitude factors [which are cho-(i)Ak

sen such that the constraints given by (37) and (38) are sat-
isfied] are denoted collectively by {A}. F can then be written
as

1 p/2 (n11)/n
˙3n εe 2˙F({A}) = s ε R sin u du dR0 0 E E S D˙(n 1 1) ε0a /b 0

(42)

where R = r/b.
F must be minimized with respect to the unknowns {A}.

Substituting for in terms of [using (26), (37), (38), and˙ε̇ Ee

(41)] in the preceding equation, Fmin will have the form
(n11)/n

Ė
˙F = g(n, a/b)s ε (43)min 0 0 S Dε̇0

where the number g(n, a/b) is provided by the numerical so-
lution. Using the constitutive relation (28), the strain rate isĖ
then given by

n
ε̇ S0

Ė = (44)S Dn s0n 1 1
g(n, a/b)FS D Gn

where S = S33 2 S11. For a homogeneous sphere consisting
FIG. 6. Comparison between Suquet’s Upper Bound and Nu-
merically Evaluated Upper Bounds for Hashin’s Composite
Sphere Model

of a nonlinear viscous matrix, with no inclusion, subject to the
same boundary conditions (i.e., the preceding problem with a
= 0), the strain rate will similarly be given by

n
ε̇ S0

Ė = (45)S Dn s0n 1 1
g(n, 0)FS D Gn

By comparing (44) and (45) the stiffening effect S of a par-
ticular volume fraction f = (a/b)3 of rigid inclusions is then
given by

n
g(n, f )

S = (46)F Gg(n, 0)

Numerical Implementation

The double integral in (42) cannot be evaluated analytically
in terms of the amplitude factors except in the case when n =
1. Hence it was evaluated numerically using an adaptive re-
cursive Newton-Codes eight-panel rule (Forsythe et al. 1977).

Minimization of F with respect to the amplitude factors {A}
was achieved by a numerically implemented quasi-Newton
method (Shamo 1970). All numerical implementation was
done using standard library functions in Matlab.

The choice of functions used for the representation of x(r,
u) included the four terms from the linear case [(33)] and was
guided by the results of trial calculations aimed at reaching
the minimum of F most efficiently. Terms were added to x
given by (33) until no further reduction in the value of F was
observed. Fig. 6 shows results obtained by using x given by
(33) and

(5) 5 (4) 4 (3) 3 (2) 2 (4)x(r, u) = P (cos u) A r 1 A r 1 A r 1 A r 1 A r2,u 2 2 2 2 1S
(21) (22)A A2 2(0)1 A 1 12 D2r r (47)

In the case of x given by (33), no minimization was nec-
essary, while with x given by (47) minimization with respect
to four unconstrained amplitude factors was carried out [note
that there are four linear constraints from the boundary con-
ditions given by (37) and (38)]. In some of the exploratory
calculations as many as 12 amplitude factors where i =(i)[A ,2

24, . . . , 7] were used to represent f2(r). This yielded results
not appreciably different from those obtained using (47). Also
only the second-degree Legendre polynomial terms (P2) were
found to be important, with the terms containing P4, P6, . . .
having little influence on the results. Thus (47) was found to
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give a good representation of the stream function x for all
conditions investigated, and further results are presented only
for x as given by (47).

As a check for the numerical method the minimization pro-
cedure was carried out for the linear case (n = 1) with different
representations for x. It can be seen from Fig. 6 that the results
coincided with Hashin’s analytical solution as expected.

Comparison with Suquet’s Upper Bound

Suquet (1993) proposed a method for transposing any up-
per-bound solution for a linear viscous composite to a corre-
sponding upper bound for a nonlinear viscous composite with
the same microstructure. For the case of a nonlinear viscous
material, reinforced by rigid inclusions, Hashin’s upper bound
for the linear composite sphere assemblage can be transposed
to the nonlinear case, to derive the stiffening effect S. This
gives the closed form solution

21 (n11)/2
2/3 22 f (1 2 f )(n11)/2S = (1 2 f ) 1 1 f (1 2 f ) 2

5 10 107/3F S D G2 f 1
21 21

(48)

A comparison between Suquet’s analytical upper bound and
the numerically evaluated upper bound for the composite
sphere model is shown in Fig. 6. It can be seen from Fig. 6
that, while Suquet’s linear to nonlinear transformation works
well for low n, Suquet’s method overestimates S appreciably
at high values of n.

Most of the work done on bounding the effective properties
of nonlinear composites is based on extending theories devel-
oped for linear composites. Major progress in this direction
was made by extending the Hashin-Shtrikman (1962) varia-
tional structure to nonlinear problems, initiated by Willis
(1983) and developed generally by Talbot and Willis (1985)
and Willis (1989). Ponte and Willis (1988), using˜Castaneda
the Talbot and Willis method, and Ponte (1991),˜Castaneda
using another prescription, developed bounds for the effective
properties of general nonlinear viscous composites. Suquet’s
results agree with these bounds for the special case of voids
or rigid inclusions in a nonlinear viscous matrix.

A perturbation expansion by Suquet and Ponte ˜Castaneda
(1993) for weakly inhomogeneous nonlinear composites,
which is exact to the second order, showed that the nonlinear
bounds and estimates of the Hashin-Shtrikman type, resulting
from the preceding variational procedures, are only exact to
the first order. Thus, Hashin’s composite sphere bound that is
a second-order pattern bound (Hervé et al. 1991), when trans-
formed to the nonlinear case using Suquet’s method, is re-
duced to a first-order bound. [For a more detailed review see
Deshpande (1997).]

EXPERIMENTS ON IDEALIZED BITUMINOUS MIXES

Deshpande (1995) carried out an extensive experimental
study on the deformation behavior of idealized bituminous
mixes. A brief summary of that experimental investigation is
given in this section.

Pure Bitumen

Cheung and Cebon (1996a) developed mathematical models
for the deformation behavior of a 50 pen bitumen over a wide
range of temperatures and strain rates. For temperatures above
'2107C they found that the steady-state deformation behavior
of bitumen could be described by the ‘‘modified Cross model’’
(Cheung and Cebon 1996a)
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FIG. 7. Some Experimental Results from Compression Tests
on Idealized Bituminous Mixes at 20&C (Deshpande 1995). Data
for Mix with 40% by Volume Sand Were Corrected from Mea-
surement Temperature of 0 to 20&C Using Eq. (50)

˙s ε 1
= (49)nc˙s ε0 0 ε̇S D1 1 S Dε̇0

where nc, s0, = material constants for bitumen. They alsoε̇0

found that the temperature dependence of bitumen was acti-
vation energy controlled at low temperatures (T < 207C for his
bitumen) and free volume controlled at higher temperatures (T
> 207C)

ε̇ Q0c = exp , T # T (50)dS Dε̇ RT0

ε̇ 2a (T 2 T )s 1 slog = , T $ T (51)dS Dε̇ a 1 (T 2 T )0 2 s

The values of the material constants Qc, a1, a2, Ts, Td,˙ ˙ε , ε ,0c s

s0, and nc may be found in Cheung and Cebon (1996a). The
steady-state stress versus strain-rates relationship at 207C for
the bitumen tested by Cheung and Cebon is shown in Fig. 7.
It can be seen from the asymptotes to the modified Cross
model, the constitutive behavior can be approximated as linear
viscous below s = 1 3 105 Pa and power law viscous with n
= 2.3 above s = 1 3 105 Pa. It should be noted that for
modeling purposes the bitumen is treated as a power-law vis-
cous material with a power of 1 representing the low stress
behavior and a power of 2.3 at higher stresses. No attempt is
made to model the intermediate region around 105 Pa because
the more general constitutive equation needed there [(49)] pre-
vents use of the analysis techniques described previously.

The same bitumen tested by Cheung and Cebon was used
to manufacture the idealized mixes described next.

Idealized Mixes

Four main types of mixes (in the form of cylindrical spec-
imens) consisting of bitumen mixed with various volume frac-
tions of different kinds of particulate inclusions were tested as
follows:

1. Bitumen and 40% by volume sand particles between 300
and 600 mm.

2. Bitumen and 52% by volume sand particles between 300
and 600 mm.

3. Bitumen and 64% by volume of one of the following:
• Spherical glass beads 1.7 mm in diameter
• Sand particles between 300 and 600 mm
• Sand particles between 1.18 and 2.36 mm

4. Bitumen and 75% by volume sand consisting of a mix-



FIG. 8. Comparison between Various Models and Desh-
pande’s (1995) Experimental Results

ture of equal quantities of sand particles between 150
and 300 mm and 1.18 and 2.36 mm.

Two types of tests in uniaxial compression were conducted.
In the constant strain rate tests, a constant displacement rate
was applied to the specimen, whereas in the constant stress
tests, a constant force was applied (instantaneously) to the
specimen and held.

The steady-state stress versus strain rate relationship for
some of the mixes at 207C is shown in Fig. 7. It can be seen
that the mix curve shows the same shape as the pure bitumen
curve. The main difference between the curves is that the
steady-state strain rate of the mix is less than that of pure
bitumen for the same stress (i.e., the mix is stiffer than pure
bitumen). The stiffening effect S is shown schematically in
Fig. 7.

The stiffening effect was found to be predominantly a func-
tion of the volume fraction of the inclusions and independent
of particle size and shape (the various types of inclusions in
the 64% mix all gave S ' 1,000). Also, tests performed at
temperatures ranging from 0 to 407C showed that the stiffening
effect S was a function of the volume fraction of inclusions
only, with the temperature dependency being the same as that
of pure bitumen [i.e., given by (50) or (51)]. The mix with
40% by volume sand particles was only tested at 07C because
the mix was too soft to make stable compression specimens
at higher temperatures. The results shown in Fig. 7 for this
mix have been corrected to a temperature of 207C using (50).

ANALYSIS

A comparison between the stiffening predicted by the anal-
yses presented here and the experimental results for bitumen
(i.e., a nonlinear viscous material with n = 2.3), reinforced by
various volume fractions of rigid inclusions, is shown in Fig.
8. It can be seen that the predictions of the composite sphere
upper-bound analysis agree well with the experimental obser-
vations over three orders of magnitude of S. Furthermore, it
can be seen that Suquet’s method overestimates S by about an
average of 45% for the bitumen composite over the entire
range of six orders of magnitude of S. However, for a random
composite like asphalt, where manufacturing conditions, com-
positions, and microstructures greatly differ, this could be con-
sidered to be within acceptable limits. Therefore, for practical
purposes it should be acceptable to use Suquet’s closed-form
solution to estimate the stiffening factor of subspherical rigid
inclusions in a bitumen matrix.

Fig. 8 also shows that the hexagonal array analysis substan-
tially underpredicts experimental measurements for a high vol-
ume fraction of rigid particulate inclusions. However, a com-
parison of the hexagonal array analysis with other existing
models [e.g., Duva (1984), Bao et al. (1991), and lower
bounds] shows that the stiffening effect predicted by this
model for the regular array agrees well with that predicted by
the various other analyses for the same volume fraction of
rigid inclusions [see Deshpande (1995)].

Brady and Bossis (1985), using numerical calculations, and
Campbell and Forgacs (1990), using percolation theory, have
shown that ‘‘structure’’ or ‘‘cluster formation’’ in the aggre-
gate is important in random or disordered composites. Anal-
yses such as the hexagonal array analysis (i.e., analyses which
give the exact solution for the stiffness of a composite with a
particular known microstructure), ignore the effects of struc-
ture or clusters that form in random composites. This may be
one of the reasons for the discrepancy between the predictions
of the hexagonal array analysis and experimental measure-
ments. Furthermore, the hexagonal model is a plane strain
model (hence 2D). Comparisons of the predictions of this
model with experimental data [three-dimensional (3D)] should
thus be viewed with caution.

CONCLUSIONS

1. A simple analytical solution for the constitutive law of a
regular array of rigid hexagonal prisms separated by thin
films of a nonlinear viscous material under general bi-
axial loading was presented. The evolution of the con-
stitutive law with compressive strain was discussed.

2. Hashin’s composite sphere model was used to derive an
upper-bound solution for a composite consisting of rigid
inclusions in a nonlinear viscous matrix. This was eval-
uated numerically.

3. Suquet’s closed-form, upper-bound solution for a power
law viscous material reinforced by rigid particulate in-
clusions, obtained by transforming Hashin’s linear upper
bound, provides a good approximation for a composite
with a matrix having a low value of the power law ex-
ponent n. However, for n $ 6 Suquet’s upper-bound ap-
proximation overestimates the stiffening effect substan-
tially.

4. Hashin’s composite sphere upper bound predictions of
the stiffening effect S agree well with experimental mea-
surements. However the hexagonal array analysis under-
estimates S by an order of magnitude.
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