Size dependence of energy storage and dissipation in a discrete dislocation plasticity analysis of static friction

V. S. Deshpande a, A. Needleman b,∗, E. Van der Giessen c

a Cambridge University, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ, UK
b Brown University, Division of Engineering, 182 Hope Street, Providence, RI 02912-9104, USA
c University of Groningen, Department of Applied Physics, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Received 13 September 2004; received in revised form 17 November 2004; accepted 4 January 2005

Abstract

The initiation of frictional sliding between a flat-bottomed indenter and a planar single crystal substrate is analyzed using discrete dislocation plasticity. Plastic deformation is modeled through the motion of edge dislocations in an elastic solid with the lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation incorporated through a set of constitutive rules. The adhesion between the indenter and the substrate is modeled using a shear traction versus sliding displacement cohesive relation. The evolution of the energy storage and dissipation are calculated as a function of contact size.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Dislocations; Mechanical properties; Friction; Plastic; Size effects; Computer simulation

1. Introduction

Frictional sliding is a complex process involving contact with multiple asperities, typically of a range of sizes. One issue is the magnitude of the friction force necessary to slide across a single asperity, \(F_{\text{fr}} \). Bowden and Tabor [1] developed a theory in which \(F_{\text{fr}} \) is taken to be proportional to the area of the contact \(A_c \) via

\[
F_{\text{fr}} = \tau_{\text{fr}} A_c.
\]

In this “plastic junction” theory of Bowden and Tabor [1] it is implicitly assumed that the friction stress \(\tau_{\text{fr}} \) is independent of the contact area. In [2], the initiation of sliding between a flat-bottomed indenter and a planar metallic single crystal substrate was analyzed using discrete dislocation plasticity. A range of contact sizes was found for which \(\tau_{\text{fr}} \) is size dependent. It was also found that the dislocation structure that accompanies sliding varied with the contact size.

A related issue of interest is the extent to which the plastic dissipation depends on contact size. The work expended in sliding is partitioned into the work required to overcome adhesion, the energy dissipated in plastic flow and the energy stored in the dislocation structure that develops. Here, the evolution of the energy partitioning is analyzed for three of the contact sizes in [2]. Each contact size considered exhibits qualitatively different behavior.

2. Method of analysis

Plane strain discrete dislocation analyses of the initiation of sliding between a perfectly flat indenter and a planar single crystal substrate are carried out as sketched in Fig. 1. For computational efficiency, the edge dislocations are confined to a region near the indenter as sketched in Fig. 1 and the computations are terminated before any dislocations reach the boundary of this region.

The dislocations are modeled as line singularities in an isotropic elastic solid. Consistent with the plane strain condition, only edge dislocations are considered, all having the
same Burgers vector. Initially, the material is free of mobile dislocations and dislocations can be generated from randomly distributed discrete sources.

A cohesive surface is used to model the adhesion between the two contacting surfaces. In [2], two forms of the cohesive relation were considered. Here, attention is focused on the "non-softening" relation in [2] given by:

$$\tau = \begin{cases} \tau_{\text{max}} \frac{1}{2} \phi \quad \text{if} \quad |\Delta_t| < \delta_t; \\ -\tau_{\text{max}} \text{sign}(\Delta_t) \quad \text{otherwise}, \end{cases}$$

where $\Delta_t = u_t(x_1, 0)$ is the tangential displacement jump across the cohesive surface, τ the shear traction and τ_{max} and δ_t are prescribed constants.

A displacement, U, is imposed in the x_1 direction to simulate the relative sliding of the two contacting surfaces and attention is focused on the initiation of sliding. The computation of the deformation history is carried out in an incremental manner with U increased monotonically as described in [2] with superposition, [4], used to satisfy the boundary conditions. Dislocation rules are given for: (i) dislocation glide; (ii) annihilation; (iii) nucleation; and (iv) obstacle pinning.

From conservation of energy, the work done by the loading is

$$W = a \int_0^U \tau dU = \Phi + W_{\text{plas}} + W_{\text{cohes}}$$

where τ is the average contact shear stress, Φ the elastic energy stored in the material, W_{plas} is the plastic dissipation and W_{cohes} is the energy expended in the cohesive surface.

Recently, Benzerga et al. [5] have used discrete dislocation plasticity analyses to calculate the evolution of the stored energy of cold work and plastic dissipation and corresponding analyses are carried out here. The elastic energy stored in the material is obtained via

$$\Phi = \int_0^U \phi_i dA, \quad \phi_i = \frac{1}{2} \sigma_{ij} \epsilon_{ij}^s$$

where ϵ_{ij}^s is the elastic strain. Also, in calculating Φ, a region of radius $4b$ is excluded around each dislocation core. Numerical checks showed that decreasing the core radius to $2b$ had a negligible effect on Φ, although the order of integration required to calculate Φ accurately then had to be increased.

Because in discrete dislocation plasticity, the plastic part of the deformation is associated with the evolution of displacement jumps across the slip planes, the displacement gradient field, needed to compute strains, involves delta functions. Here, an approximation is used to calculate the plastic dissipation. A smooth strain rate field, ϵ_{ij}^s, is introduced in each finite element that is computed by differentiating the total displacement rate field u_t in that element using the finite element shape functions. Then, at each point within an element, the plastic dissipation, W_{plas}, is the stress working through ϵ_{ij}^s minus the energy stored. The total plastic dissipation is obtained by integrating over all elements so that

$$W_{\text{plas}} = \int_A w_{\text{plas}} dA, \quad w_{\text{plas}} = \int_0^U \sigma_{ij} \epsilon_{ij}^s dt - \frac{1}{2} \delta_{ij} \epsilon_{ij}^s$$

The cohesive energy, W_{cohes}, at time t, is given by

$$W_{\text{cohes}} = \int_{\text{coh}} w_{\text{cohes}} dS,$$

where w_{cohes} is obtained as $\int T_i d\Delta_t$ where T_i and Δ_t are related by Eq. (2).

3. Results

The single crystal substrate is taken to have three slip systems: oriented at $\theta = \pm 60^\circ$ and $\theta = 0^\circ$ with respect to the contact surface $x_2 = 0$. Each slip system consists of equally placed slip planes $1000 \mu m$ apart in the process window, where $b = 0.25 \mu m$ is the magnitude of the Burgers vector. A density of sources, $\rho_{\text{src}} = 72 \mu m^2$, distributed on each slip plane nucleate a dipole when the Peach-Koehler force exceeds a critical value of $\tau_{\text{max}} b$ during a period of time $\tau_{\text{max}} = 10 ns$. τ_{max} has a Gaussian distribution with mean $\tau_{\text{max}} = 50 MPa$ and standard deviation $10 MPa$. It is also a density of obstacles, $\rho_{\text{obs}} = 124 \mu m^2$, with obstacle strength $\tau_{\text{obs}} = 150 MPa$. The dislocation velocity is taken to be proportional to the Peach-Koehler force with drag coefficient $B = 10^{-4} Pa s$ and the annihilation distance is $6b$. The crystal elasticity is taken to be isotropic with $E = 70 GPa$ and $\nu = 0.33$. The cohesive properties are given by $\tau_{\text{max}} = 300 MPa$ and $\delta_t = 0.5 \mu m$.

The effect of the contact size a on the friction stress, τ_f, was studied in [2]. It was found that the τ_f versus a curve exhibits two plateaus: for large contacts ($a \geq 10 \mu m$), τ_f is of the order of the yield strength and essentially independent of a, while for small contacts ($a < 0.5 \mu m$), $\tau_f = \tau_{\text{max}}$. In the transition regime, $\tau_f \propto a^{-1/2}$ as found on a different basis in [3].

The evolution of energy storage and dissipation is considered for three contact sizes; $10 \mu m$, a contact size on the lower plateau; $1 \mu m$, a transition contact size; and $0.1 \mu m$, a contact size on the upper plateau ($\tau_f = \tau_{\text{max}}$). On the lower plateau, plastic deformation is highly localized directly be-
Fig. 2. Contours of the plastic dissipation per unit volume, w_{plas}, computed from Eq. (5) for the 10 and 1 µm contact sizes (there is no plasticity for the 0.1 µm contact size). For the 10 µm contact, plastic dissipation mainly occurs directly below the contact surface, although as can be seen in Fig. 2(a), the region with high dissipation extends somewhat in front of and behind the contact area. The high dissipation region only penetrates a few tenths of microns into the material. For the 1 µm contact, the extend of the region near the surface with high dissipation is several times the extent of the contact area and the high dissipation region extends more than 0.5 µm into the material. This is consistent with the increased slip activity on systems oblique to the contact surface.

The evolution of the total plastic dissipation and strain energy for the three contact sizes considered is shown in Fig. 3(a) while Fig. 3(b) shows the evolution of the cohesive energy. For the 0.1 µm contact, on the upper plateau, the elastic energy is partitioned into elastic energy and cohesive energy, with the elastic energy dominating the early stages of sliding and the cohesive energy the latter stages of sliding. For the 10 µm contact, on the lower plateau, the cohesive energy is a negligible fraction of the total work W and the partitioning is mainly between the elastic energy and the plastic dissipation. Note that some of the elastic energy is associated with the “overall” stress state and some is associated with the dislocation structure present in the material. Plastic dissipation begins at $U \approx 0.01$ µm and around $U = 0.04$ µm the plastic dissipation has increased to exceed the elastic energy. To check the consistency of the energy calculation and, in particular, the adequacy of the approximation inherent in Eq. (5), the energy balance Eq. (3) was checked for each calculation. For the 0.1 µm contact, where there is no plasticity, Eq. (3) was satisfied to within 0.001% of W; for the intermediate size 1 µm contact, this relation was satisfied to within 5% of W, while for the 10 µm contact on the lower plateau the energy balance was met within 0.1% of W.

To gain insight into the fraction of the elastic energy associated with the dislocation structures in the 10 and 1 µm contacts, unloading calculations were carried out from $U = 0.5$ µm for the 10 and 1 µm contacts until the average shear stress across the contact $\tau \approx 0$. During this unloading process, some change in the dislocation structure does occur underneath the contact area and the direction of slip is mainly parallel to the contact surface. In the transition regime, the slip that occurs parallel to the contact surface is ≈ 0.2 µm below the contact surface and, in addition, there is increased dislocation activity on the systems oblique to the contact surface.

Fig. 3. Normalized (a) plastic dissipation W_{plas} and strain energy Φ and (b) cohesive energy W_{cohes} as a function of the displacement U for three contact sizes a. The evolution of the energies upon unloading from $U = 0.5$ µm for the $a = 10.0$ µm and 0.1 µm contacts is also included. W_{plas}, Φ and W_{cohes} have been normalized by the total work W.
but the main features remain. The evolution of Φ, W_{plas} and W_{cohes} upon unloading are included in Fig. 3. While about 20% of the total external work done is stored as elastic energy associated with the dislocation structure for the 10 μm contact, this stored energy rises to about 40% in case of the 1 μm contact (and is zero for the 0.1 μm contact). Unloading until the average shear stress $\tau \approx 0$ does not always result in zero shear stresses across the whole contact and thus W_{cohes} for the 1 μm contact is not zero on unloading (Fig. 3b). Relaxation calculations carried out with the cohesive tractions set to zero across S_{coh} resulted in only very small changes to W_{plas} and Φ so that the terminal values in Fig. 3a are representative of those associated with the relaxed dislocation structures upon complete unloading. In the calculations here, the fraction of total work stored as elastic energy associated with the dislocation structure is greatest for intermediate size contacts.

Acknowledgement

Support from General Motors Cooperative Research Laboratory at Brown University is gratefully acknowledged.

References