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Abstract

The e&ective mechanical properties of the octet-truss lattice structured material have been
investigated both experimentally and theoretically. Analytical and FE calculations of the elastic
properties and plastic yielding collapse surfaces are reported. The intervention of elastic buckling
of the struts is also analysed in an approximate manner. Good agreement is found between the
predictions of the strength and experimental observations from tests on the octet-truss material
made from a casting aluminium alloy. Moreover, the strength and sti&ness of the octet-truss
material are stretching-dominated and compare favourably with the corresponding properties of
metallic foams. Thus, the octet-truss lattice material can be considered as a promising alternative
to metallic foams in lightweight structures. ? 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Over the past few years, a variety of metallic and polymeric foams have been pro-
duced for a wide range of potential applications such as the cores of sandwich panels
and various automotive parts. A typical aim is to develop lightweight structures that
are adequately sti& and strong. Numerous studies on metallic and polymer foams have
shown that the strength of the foams is governed by cell wall bending for all load-
ing conditions and scales as ;�1:5, where ;� is the relative density of the foam; see
Gibson and Ashby (1997). On the other hand, the strength of a structure that de-
forms by cell wall stretching scales with ;�. Thus, for a relative density of ;� = 0:1
the stretching-governed structure is expected to be about three times as strong as the
bending governed structure. The aim of this study is to investigate the mechanical
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properties of a stretching-governed cellular material and compare them with those of
traditional foamed materials.
Deshpande et al. (2001) have recently analysed the criteria for the construction of

stretching-dominated cellular materials. A suEcient condition for the deformation of
a periodic structure to be stretching dominated is that the unit cell of the structure
satisFes Maxwell’s criterion for static determinacy. This criterion in three dimensions
is given by

b− 3j + 6 ≥ 0 (1)

where b and j are the number of struts and nodes, respectively, in the unit cell. It
identiFes several classes of unit cells from which stretching-dominated cellular materials
(referred to as lattice materials in the following) can be synthesised. In order to give
a more deFnite prescription for constructing lattice materials, Deshpande et al. also
analysed a special class of structures with nodes which are all similarly situated —
nodes are said to be similarly situated if the remainder of the structure appears the
same and in the same orientation when viewed from any of the nodes. For this case
they showed that the necessary and suEcient condition for the structure to be stretching
dominated is that the connectivity at each node is Z = 12 (or Z = 6 if the material is
two dimensional).
Recent developments in manufacturing techniques have allowed for the manufacture

of lattice materials at length scales ranging from millimetres to tens of centimetres. For
example, the injection moulding of polymeric structures and subsequent assembly into
complex lattice materials is a cheap way to manufacture materials whose constituent
struts have aspect ratios less than about 5. These polymeric materials can then be
used as sacriFcial patterns for investment casting of metallic lattice materials. Rapid
prototyping techniques can be used to fabricate materials with lattice parameters on the
order of 0.5 mm. Recently, Brittain et al. (2001) have reported an electro-deposition
technique to manufacture truss structures with strut diameters as small as 50 �m.
Along with advances in manufacturing methods for these materials, e&orts are un-

derway to investigate their mechanical properties. Wallach and Gibson (2001) have
recently reported a combined experimental and Fnite element (FE) investigation of the
strength and sti&ness of a truss plate. They Fnd that the properties compare favourably
with those of metallic foams. Wicks and Hutchinson (2001) show that optimised truss
panels are exceptionally weight-eEcient for carrying bending and compression loads, as
compared to alternatives such as honeycomb core sandwich panels or stringer sti&ened
plates. Although the properties of truss plates have been analysed, analytical studies
on the properties of full 3D lattice materials are lacking.
In this paper we shall investigate the properties of the octet-truss (Fuller, 1961)

lattice material. The nodes of the octet-truss are conFgured in a “face centred cubic”
arrangement, such that each node has a similar situation and a connectivity of Z =12.
We report analytical and FE calculations of the elastic–plastic properties as well as
collapse surfaces due to elastic buckling. The predictions are compared with exper-
imental observations from tests on an octet-truss material made from an aluminium
casting alloy (LM25).
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Fig. 1. Structure of the octet-truss lattice material. The darkened struts represent a octahedral cell while the
nodes labelled p1–p4 form a tetrahedral cell.

1.1. Description of microstructure

A unit cell of the lattice structure is sketched in Fig. 1 and clearly shows its FCC
nature. Octahedral cells can be stacked to synthesise the octet-truss structure, with each
strut of an octahedral cell shared between two neighbouring cells. Thus, for the purposes
of structural calculations it suEces to analyse the octahedral cell. An isometric sketch
of a typical octahedral cell, with the associated Cartesian co-ordinate system (x; y; z)
is shown in Fig. 2.
An alternative repeating unit which can be stacked in the same orientation to con-

struct the octet-truss lattice material is a regular tetrahedron. One such tetrahedral cell
with nodes labelled p1–p4 is shown in Fig. 1. An isometric sketch of this tetrahedral
cell with the associated global co-ordinate system (1; 2; 3) of the octet-truss is included
in Fig. 2. Here, the 1–2 plane is parallel to the base plane p1–p2–p3 and the two-axis
is parallel to the strut between nodes p2 and p3. The (1; 2; 3) co-ordinate system cor-
responds to the three-fold symmetry of the octet-truss material about the three-axis.
Note that the 1–2 plane is a close-packed plane of the FCC structure and constitutes a
fully triangulated layer in the lattice material. Thus, the octet-truss material can be con-
structed by the successive packing of the triangulated layers in “ABCABC...” positions
with each layer separated by a tetrahedral core.
In the remainder of this paper an octet-truss lattice material constructed from identical

circular cylindrical struts is analysed. The conclusions drawn can easily be generalised
for the case of hollow or solid struts of arbitrary cross-section. The relative density
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Fig. 2. Isometric sketches of the octahedral and tetrahedral cells with the associated co-ordinate systems.

;� of the octet-truss lattice material (ratio of the density of the lattice material to the
density of the solid material from which it is made) is given by

;�= 6
√
2�

(a
l

)2
; (2)

where a and l are the radius and length of a strut, respectively. This formula is a
Frst-order approximation and overestimates the relative density due to double counting
of the volume of the nodes. A higher-order approximation of the relative density is
given by

;�= 6
√
2�

(a
l

)2
− C

(a
l

)3
; (3)

where C depends on the detailed geometry of the nodes. For small a=l, the Frst-order
approximation suEces and is used in the remainder of the analysis presented in this
paper.

2. E�ective elastic properties

The cubic symmetry of the octet-truss lattice material dictates that the form of the
linear elastic stress versus strain relationship is


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�z
�yz
�xz
�xy
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

=



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s1 0 0 0
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; (4)
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where the principal material axes (x; y; z) are deFned in Fig. 2 and s1, s2 and s3 are
three independent compliances. Note that an isotropic material has only two independent
elastic constants with s3 = 2(s1 + s2).
For small a=l, the contribution to overall sti&ness from the bending of the struts

is negligible compared to stretching of the struts. Thus, the struts are assumed to be
pin-jointed at the nodes, and analytical expressions for the compliances follow as

1
s1

=
2
√
2�
3

(a
l

)2
Es =

;�
9
Es; (5a)

1
s2

= 2
√
2�

(a
l

)2
Es =

;�
3
Es (5b)

and
1
s3

=
�√
2

(a
l

)2
Es =

;�
12

Es; (5c)

where Es is the Young’s modulus of the solid material. The macroscopic elastic stress
versus strain relationship in the (1; 2; 3) co-ordinate system is of practical interest and
is obtained by transforming (4):


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�12
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sym 20 0 2

√
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: (6)

This stress versus strain relationship displays a coupling between the normal compo-
nents of stress and the shear components of strain in the (1; 2; 3) co-ordinate system
as these directions are not aligned with the principal material directions (x; y; z).
For clarity, in the following we shall refer to the various moduli as either a Young’s

modulus E or a shear modulus G and subscript them with their respective directions.
For example, Young’s modulus in the x- and 3-directions will be denoted by Exx and
E33, respectively, while the shear modulus in the x–y direction will be referred to as
Gxy. It is worth mentioning here that E33 = ( ;�=5)Es is the maximum value of Young’s
modulus of the octet-truss lattice material over all orientations.

2.1. Comparison with the FE predictions

The accuracy of the approximate analytical expressions for the moduli was checked
against FE calculations performed using the general purpose Fnite element package
ABAQUS (HKS, 1997). In these FE calculations the pin-jointed strut assumption was
relaxed. Here, we brieQy describe details of the FE calculations.
The octahedral cell with each cylindrical strut modelled by between 20 and 40

Timoshenko beam elements (B32 element of ABAQUS) depending on its length was
analysed to extract the three cubic moduli. The displacements of the nodes at the ver-
tices of the cell were constrained so as to prevent rigid-body translation and rotation of
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Fig. 3. Comparison of the analytical and FE predictions of the elastic moduli and strength for the octet-truss
lattice material.

the cell. Further, the rotations of the nodes at vertices were constrained as dictated by
symmetry. Two stress states, uniaxial tension �zz and simple shear �xz were prescribed
and the moduli extracted from the resulting nodal displacements. We performed cal-
culations for three values of the solid material elastic Poisson’s ratio �s = 0:2, 0.3 and
0.49. However, �s had a negligible e&ect on the octet-truss material moduli. Thus, for
the sake of brevity only results for �s = 0:3 are presented.
A comparison between the analytical and FE predictions of the moduli Exx, Gxy and

E33 is shown in Fig. 3 for ;� ranging from 0.01 to 0.5. Excellent agreement between the
FE and analytical calculations is seen, in support of the pin-jointed strut assumption
made in the analytical calculations.

3. Collapse criteria

The octet-truss lattice material can fail either by plastic yielding or elastic buckling
of the struts. In this section the collapse of the lattice material by these two competing
mechanisms is explored. We shall calculate plastic collapse surfaces of the material
under various combinations of loading and then proceed to propose an anisotropic
yield criterion.

3.1. Plastic collapse

In the analytical calculations it is assumed that the struts are pin-jointed and made
from a rigid, ideally plastic solid. The macroscopic collapse stress is calculated by
equating the external work with the plastic dissipation in stretching the struts for kine-
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matically admissible modes of collapse; that is, an upper bound approach is adopted.
The accuracy of these analytical calculations was checked through FE calculations in
which the pin-jointed strut assumption was relaxed.
In the FE analysis each cylindrical strut was again modelled by between 20 and

40 Timoshenko beam elements (B32 element of ABAQUS) depending on its length.
J2 Qow theory was employed and the strut material was assumed to be elastic–plastic
with the uniaxial stress versus strain law:

�
�Y

=
{

�=�Y for � ≤ �Y;
(�=�Y)m for �¿�Y;

(7)

where �Y and �Y are the material yield stress and strain, respectively. The elastic
Poisson’s ratio �s of the material was assumed to be 0.3, the yield strain �Y of the
strut material was taken equal to 0.1% and the hardening co-eEcient m = 80 (this
small degree of hardening was required to get convergence of the FE calculations). An
imperfection in the shape of the plastic buckling mode was imposed on each strut to
ensure a unique equilibrium path in the FE calculations. The imperfection is described
by the initial transverse deQection w:

w(x) =
�a
2

[
1− cos

(
2�x
l

)]
; (8)

where � is a dimensionless imperfection parameter, a the strut radius, l the strut length
and x the axial co-ordinate along the strut measured from one end. This imperfection
is not expected to a&ect the plastic limit load values; see Section 3.4 for details. For
the calculations presented in this section � was taken equal to 0.01.
The collapse surfaces in (�zz; �xz) and (�xx; �yy) space were calculated by analysing

the octahedral cell while the tetrahedral cell was used to calculate the collapse surface
in (�33; �13) space. The displacements of the nodes at the vertices of the cell were
constrained so as to prevent rigid-body translation and rotation of the cell; and the
rotations of the nodes at the vertices were set to zero. The macroscopic yield stresses
(deFned by the peak of the macroscopic the stress versus strain curve) were calculated
for a variety of proportional stress paths and plotted in the relevant stress space to give
the plastic collapse surface.

3.1.1. Collapse surface calculations
The overall yield surface in macroscopic stress space consists of intersecting collapse

surfaces which are associated with particular collapse modes. Plastic strain increments
are normal to the relevant collapse surface. In this section we detail calculations of the
collapse surfaces for three important practical combinations of macroscopic stressing,
viz., (�zz; �xz), (�xx; �yy) and (�33; �13).

3.1.1.1. Collapse surface in (�zz; �xz) space. The collapse modes for this combination
of macroscopic stressing are sketched in side views of the octahedral cell in Fig. 4. In
the sketches dashed and solid lines struts are at yield and in the rigid state, respectively,
while a solid circle represents a plastic hinge. However, the plastic dissipation at the
hinges is neglected in comparison with the dissipation in axial stretching of the yielded
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Fig. 4. Comparison between the analytical, FE and proposed yield criterion predictions of the plastic collapse
surface in (�zz ; �xz) space (a=l = 0:1). In the sketches of the collapse modes, the dashed and solid lines
represent struts at yield and in a rigid state, respectively.

struts. As the struts yield either in compression or tension, two collapse locii exist for
each yield pattern. Thus, for collapse Mode I, the struts labelled p5–p2, p5–p3, p6–p2
and p6–p3 are yielding and the collapse planes are given by

Mode Ia :
�xz

�Y
=

�zz

2�Y
+
√
2�

(a
l

)2
(9a)

and

Mode Ib :
�xz

�Y
=

�zz

2�Y
−
√
2�

(a
l

)2
; (9b)

where �Y is the yield stress of the solid material. In Mode II, struts p5–p1, p5–p4, p6
–p1 and p6–p4 are yielding and the collapse plane equations are

Mode IIa :
�xz

�Y
=− �zz

2�Y
−
√
2�

(a
l

)2
(10a)

and

Mode IIb :
�xz

�Y
=− �zz

2�Y
+
√
2�

(a
l

)2
: (10b)

A comparison between the analytical and FE predictions of the uniaxial yield strength
�Y
zz is shown in Fig. 3 for ;� ranging from 0.01 to 0.5. The good agreement between the

two sets of calculations conFrms that the plastic dissipation in the hinges is negligible.
FE and analytical calculations of the collapse surface in (�zz; �xz) space are shown in
Fig. 4 for a=l=0:1. Again, results from the analytical and FE calculations are in good
agreement, and any discrepancy is due to the Fnite bending strength of the beams in
the FE analysis. It is noted from Fig. 4 that the di&erence between the two predictions
varies slightly with loading direction.
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Fig. 5. Comparison between the analytical, FE and proposed yield criterion predictions of the plastic collapse
surface in (�xx; �yy) space (a=l = 0:1). In the sketches of the collapse modes, the dashed and solid lines
represent struts at yield and in a rigid state, respectively.

The symmetry of the octet-truss lattice material is such that the set of collapse
surfaces (�mm; �nm) are identical, where m and n represent any pair of the x; y or
z directions. Further, the octet-truss is periodic with respect to rotations of period
90◦ about the z-axis. FE calculations show that the shear strength �xz varies by ap-
proximately 10% as the octet-truss is rotated about the z-axis with the shear strength
being minimum at a 45◦ rotation. This suggests that the collapse surface in (�zz; �xz)
space is almost invariant with respect to rotations of the co-ordinate system about the
z-axis.

3.1.1.2. Collapse surface in (�xx; �yy) space. The collapse modes under combinations
of applied stresses (�xx; �yy) are sketched in plan views of the octahedral cell in Fig. 5.
In Mode III the struts labelled p5–p1, p5–p3, p6–p1 and p6–p3 yield, with the collapse
planes described by the equations

Mode IIIa :
�yy

�Y
=

�xx

�Y
+ 2

√
2�

(a
l

)2
(11a)

and

Mode IIIb :
�yy

�Y
=

�xx

�Y
− 2

√
2�

(a
l

)2
: (11b)

In Mode IV, the struts p1–p2, p2–p3, p3–p4 and p1–p4 yield and the collapse planes
corresponding to this mode are given by

Mode IVa :
�yy

�Y
=−�xx

�Y
− 2

√
2�

(a
l

)2
(12a)
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Fig. 6. Comparison between the analytical, FE and proposed yield criterion predictions of the plastic collapse
surface in (�33; �13) space (a=l = 0:1). In the sketches of the collapse modes, the dashed and solid lines
represent struts at yield and in a rigid state, respectively.

and

Mode IVb :
�yy

�Y
=−�xx

�Y
+ 2

√
2�

(a
l

)2
: (12b)

The FE calculations of the collapse surface are included in Fig. 5; good agreement is
noted with the above analytical predictions. Note that symmetry dictates that the set
of collapse surfaces (�mm; �nn) are identical where m and n represent any pair of x; y
or z directions.

3.1.1.3. Collapse surface in (�33; �13) space. For the combinations (�33; �13) of macro-
scopic stress, it is convenient to analyse the tetrahedral cell. The various collapse modes
are sketched in side views of the tetrahedral cell, see Fig. 6. In Mode V, the two struts
p4–p2 and p4–p3 yield while in Mode VI the strut p4–p1 yields. The equations of
the collapse planes corresponding to these modes are given by

Mode Va :
�13

�Y
=

�33√
2�Y

+ 2�
(a
l

)2
(13a)

and

Mode Vb :
�13

�Y
=

�33√
2�Y

− 2�
(a
l

)2
(13b)

for Mode V and

Mode VIa :
�13

�Y
=− �33

2
√
2�Y

− �
(a
l

)2
(14a)
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and

Mode VIb :
�13

�Y
=− �33

2
√
2�Y

+ �
(a
l

)2
(14b)

for Mode VI. Comparisons between the analytical and FE calculations for a=l = 0:1
are shown in Fig. 6: good agreement again conFrms the accuracy of the analytical
calculations.
The collapse surface in �33–�13 space is approximately invariant with respect to

rotations of the co-ordinate system about the three-axis, by the following argument.
Consider shear loading with �33=0. The shear strength �13 of the octet-truss is periodic
with respect to rotations of period 60◦ about the three-axis; FE calculations reveal that
the shear strength �13 varies by less than 10% as the octet-truss is rotated about the
three-axis, with the shear strength a maximum for a 30◦ rotation.

3.2. Anisotropic yield criterion

While the collapse surfaces presented in the previous section are useful for display-
ing the yield stress under speciFc load paths, a closed-form expression for the yield
surface would be advantageous in summarising the collapse response of the octet-truss
lattice material. In this section we shall make use of Hill’s (1948) generalisation of
the von Mises yield criterion for materials with orthotropic symmetry. An orthotropic
material has three mutually perpendicular planes of symmetry at every point, with the
intersections of these planes known as the principal axes of anisotropy. With respect
to the principal axes of anisotropy (x; y; z), Hill’s yield criterion has the form

� ≡ �2
d − 1 = 0; (15a)

where the applied macroscopic stress is characterised by the e&ective stress measure
�d given by

�2
d ≡ A(�x − �y)2 + B(�y − �z)2 + C(�z − �x)2 + D�2xz + E�2yz + F�2xy: (15b)

Here, A–F are parameters which characterise the degree of anisotropy.
The octet-truss lattice material also has three mutually perpendicular planes of sym-

metry passing through every node and the (x; y; z) axes as deFned in Fig. 2 correspond
to the principal axes of anisotropy. Thus, it is appropriate to consider using Hill’s
criterion to describe the yielding of this material. However, Hill’s anisotropic yield
criterion assumes that plastic yielding is not inQuenced by hydrostatic pressure. This
is clearly not the case for the cellular octet-truss lattice material. We therefore modify
Hill’s criterion by incorporating a mean stress dependence on yielding.
As the simplest extension of Hill’s yield criterion we assume that the yield function

� of the octet-truss lattice material is quadratic in mean stress �m = �kk=3, and in the
deviatoric stress measure �d. � is then of the form

�≡ �2
d + G�2

m − 1

= A(�x−�y)2+B(�y−�z)2+C(�z−�x)2+D�2xz+E�2yz+F�2xy+G�2
m−1 = 0;

(16)
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where A–G are material constants. The quadratic term �m�d is rejected as it is assumed
that the yield stresses under hydrostatic compression and tension are equal. It must be
remembered that the yield criterion (16) only has the form shown when the principal
axes of anisotropy coincide with the reference axes; otherwise, the form of the yield
condition changes in a way that can be found by rotating the co-ordinate system.
It remains to calibrate the yield criterion to determine the material constants A–G.

The uniaxial and shear yield strengths with respect to the material principal axes and
the hydrostatic yield strength �Y

m of the octet-truss lattice material are

�Y
xx = �Y

yy = �Y
zz = 2

√
2�

(a
l

)2
�Y; (17a)

�Y
xy = �Y

xz = �Y
yz =

√
2�

(a
l

)2
�Y (17b)

and

�Y
m = 2

√
2�

(a
l

)2
�Y; (17c)

respectively. Upon substituting the above yield stresses into (16) and solving for A–G,
the yield criterion for the octet-truss lattice material can be re-written as

�≡ 4
9
[(�x − �y)2 + (�y − �z)2 + (�z − �x)2]

+ 4[�2xz + �2yz + �2xy] + �2
m −

[
2
√
2�

(a
l

)2
�Y

]2
= 0; (18)

where 2
√
2�(a=l)2�Y is the uniaxial yield strength in a principal direction of anisotropy.

Thus, to fully describe the state of anisotropy of the octet-truss lattice material we must
know the orientations of the principal axes of anisotropy and the measured uniaxial
yield strength in the principal directions.
Comparisons between the calculated collapse surfaces and the predictions of the

above yield criterion are shown in Figs. 4–6. In (�zz; �xz) space, good agreement is
seen between the predictions of the proposed yield criterion and both the FE and ana-
lytical calculations. On the other hand, in (�xx; �yy) space the proposed yield criterion
substantially overestimates the yield stresses under biaxial tension and compression. In
(�33; �13) space, the yield criterion does not capture the form of the collapse surface
accurately. The Hill criterion has been explored in this paper due to its simplicity;
however, it is a purely empirical description and there is no a priori reason for it to
capture the yield response of the orthotropic octet-truss accurately.
In an e&ort to propose a better functional form for the yield criterion we tried

higher-order functions of �m and �d (viz., fourth- and sixth-order functions). However,
no improvements in the accuracy of the predictions were found. The authors have been
unable to construct a simple expression for a yield criteria that will capture the plastic
collapse of the octet-truss lattice material under a variety of stress states to suEcient
accuracy.
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3.3. The elastic buckling strength

The octet-truss lattice material collapses by elastic buckling of the struts if the Euler
buckling load of the struts as given by

PE =
n2�3Esa4

4l2
(19)

is less than their plastic yielding load PY = �a2�Y. The factor n in (19) depends upon
the rotational sti&ness of the end nodes of the strut and is central to the problem of
calculating PE for a given network of struts. When a strut buckles, the rotation of its
ends is opposed by the bending of the other struts: they exert a restoring moment and it
is this that determines the factor n2 in (19). Thus, n depends upon the buckling mode.
The cells of the octet-truss lattice material may buckle in many di&erent modes and the
resulting problem is very complicated to analyse completely. We simplify the problem
by assuming that the struts are pin-jointed. Thus, the rotational sti&ness of the nodes
is zero and n=1 in (19). It is recalled that the buckling load of an axially loaded strut
is strongly dependent on the end constraints, and so the calculations presented below
should be viewed as lower bounds to the buckling strength.
The collapse stresses due to the elastic buckling of the struts are estimated by equat-

ing the external work to the internal work in buckling the struts for kinematically
admissible collapse modes. In these analytical calculations we assume the struts are
rigid up to the onset of buckling. The post-buckling load-shortening relation for an
inextensional pin-ended strut of length l is given by (Budiansky, 1974)

P ≈ PE

(
1 +

"
2l

)
(20)

for small axial displacements ". Thus, a Frst-order approximation of the work asso-
ciated with a shortening " is PE" and the total internal work is

∑
PE" over all the

buckling struts. Note that in the analytical calculations we neglect the e&ects of elastic
deformations prior to the onset of buckling. The accuracy of this assumption has been
checked through Fnite deformation FE calculations.
In the FE calculations, the struts were assumed to be pin-jointed elastic beams com-

prising of Timoshenko beam elements (B32 of ABAQUS). The strut material was
assumed to be elastic–plastic with the uniaxial stress versus strain law (7). Calcula-
tions were performed for two material yield strains �Y = 0:05 and 0.1 with a strain
hardening exponent m= 80 in both cases. As in the plastic calculations the octahedral
cell was used in (�zz; �xz) and (�xx; �yy) collapse surface calculations while the tetrahe-
dral unit cell was employed to calculate the (�33; �13) collapse surface. An imperfection
of shape given by the elastic buckling mode of pin-ended struts, and described by the
initial transverse deQection,

w(x) = �a sin
(�x

l

)
(21)

was imposed on each strut. As in (8), � is the imperfection level and x is the axial
co-ordinate along the strut measured from one end. For the calculations presented in
this section, an imperfection level � = 0:01 was added to all the struts. Note that the
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Fig. 7. Comparison between the analytical and FE predictions of the buckling governed collapse surface in
(�zz ; �xz) space, for �Y = 0:05 and 0.1 (a=l = 0:1).

limit load for buckling is insensitive to the choice of � for the material and geometrical
parameters considered here; see Section 3.4 for details.

3.3.1. Buckling collapse surfaces
We now proceed to detail the collapse surfaces due to elastic buckling, as computed

by analytical and FE methods for the combinations of macroscopic stressing considered
earlier, (�zz; �xz), (�xx; �yy) and (�33; �13).

3.3.1.1. Collapse surface in (�zz; �xz) space for elastic buckling. The sketches in Fig. 7
show the possible buckling modes in side views of the octahedral cell, with the
dashed lines representing the buckled struts. Since the struts only buckle in compres-
sion, a single collapse plane is associated with each buckled state and the equations of
the collapse planes for the three collapse modes are given by

Mode B-I :
�xz

�Y
=

�zz

2�Y
+

�3

2
√
2�Y

(a
l

)4
; (22a)

Mode B-II :
�xz

�Y
=− �zz

2�Y
− �3

2
√
2�Y

(a
l

)4
(22b)

and

Mode B-III :
�zz

�Y
=

�3√
2�Y

(a
l

)4
: (22c)

The buckling collapse planes (22) are plotted in Fig. 7 for a=l=0:1 and solid material
yield strains �Y = 0:05 and 0.1. The appropriate plastic collapse planes are included
in the Fgure. Good agreement is seen between the FE and analytical calculations in
support of the inFnitesimal deformation assumption made in the analytical calculations.
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Fig. 8. Comparison between the analytical and FE predictions of the buckling governed collapse surface in
(�xx; �yy) space, for �Y = 0:05 and 0.1 (a=l = 0:1).

On comparing the buckling collapse stresses (22) with the plastic collapse stresses we
note that the entire collapse surface is governed by the elastic buckling of the struts
when �Y ¿ (3�2=4)(a=l)2.

3.3.1.2. Collapse surface in (�xx; �yy) space for elastic buckling. The buckling col-
lapse modes for the loading in (�xx; �yy) space are sketched in Fig. 8. The buckled
struts are represented by dashed lines in plan views of the octahedral cell. The equations
of the collapse planes for the three collapse modes are

Mode B-IV :
�yy

�Y
=

�xx

�Y
+

�3√
2�Y

(a
l

)4
; (23a)

Mode B-V :
�yy

�Y
=−�xx

�Y
− �3√

2�Y

(a
l

)4
(23b)

and

Mode B-VI :
�yy

�Y
=

�xx

�Y
− �3√

2�Y

(a
l

)4
: (23c)

FE and analytical predictions of the collapse surfaces in (�xx; �yy) space are shown in
Fig. 8 for a=l=0:1 and �Y =0:05 and 0.1; the predictions of both methods are in good
agreement. Elastic buckling collapse governs collapse for all stress states other than
a biaxial tensile stress state: the three buckling modes B-IV to B-VI are activated in
preference to plastic collapse if �Y ¿ (�2=4)(a=l)2. Under biaxial tension, the collapse
mode is always by plastic yield irrespective of the value of �Y.

3.3.1.3. Collapse surface in (�33; �13) space for elastic buckling. The collapse modes
in (�33; �13) space are sketched in top and side views of the tetrahedral cell in Fig. 9.
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Fig. 9. Comparison between the analytical and FE predictions of the buckling governed collapse surface in
(�33; �13) space, for �Y = 0:05 and 0.1 (a=l = 0:1).

The equations of the four collapse modes are given by

Mode B-VII :
�13

�Y
=

�33√
2�Y

+
�3
2�Y

(a
l

)4
; (24a)

Mode B-VIII :
�13

�Y
=− �33

2
√
2�Y

− �3
4�Y

(a
l

)4
; (24b)

Mode B-IX :
�13

�Y
=− �33

2
√
2�Y

+
3�3
4�Y

(a
l

)4
(24c)

and

Mode B-X :
�13

�Y
=

√
2
5

�33

�Y
− 3�3

5�Y

(a
l

)4
: (24d)

On comparing these elastic buckling collapse stresses with the corresponding plastic
collapse stresses (13) and (14), it follows that buckling modes B-VII and B-VIII are
activated if �Y ¿ (�2=4)(a=l)2 while modes B-IX and B-X are triggered if �Y exceeds
(3�2=4)(a=l)2 and (7�2=20)(a=l)2, respectively. Note that the entire collapse surface is
governed by the elastic buckling of the struts when �Y ¿ (3�2=4)(a=l)2.
A comparison between the analytical and FE predictions of the collapse surface in

(�33; �13) space is shown in Fig. 9 for a=l = 0:1 and �Y = 0:05 and 0.1. The small
discrepancies between the analytical and FE predictions are due to Fnite deformation
e&ects: as mentioned earlier the analytical calculations for the collapse loads were
performed for inFnitesimal deformations while the FE analysis was a Fnite deformation
calculation.
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Fig. 10. E&ect of imperfections on the collapse surface in (�zz ; �xz) space, for �Y = 0:025 and a=l = 0:1.

3.4. E6ect of geometric imperfections

In general, the elastic buckling and plastic collapse surfaces overestimate the collapse
stresses of an elasto-plastic lattice material; interactions between the elastic buckling
and plastic yielding of the struts substantially knock-down the collapse stresses. In this
section we examine this interaction and use the Fnite element method to investigate
the e&ect of imperfections in the form of strut waviness. For the sake of consistency
with the elastic buckling calculations detailed in the previous section we assume that
the struts are pin-jointed.
Here we consider imperfections of the same shape as the buckling mode and de-

scribed by (21). The inQuence of the imperfection level � on the collapse loads of
an axially loaded pin-ended strut is most marked when �Y ≈ (�a=2l)2 (Hutchinson,
1974). For example, if a=l=0:1 and �Y = 0:025, the collapse loads are expected to be
substantially reduced due to the inQuence of imperfections.
FE calculations of the collapse surface in (�zz; �xz) space for a=l=0:1 and �Y=0:025

are shown in Fig. 10 for two levels of imperfections, � = 0:01 and 0.1. The collapse
stresses for both levels of imperfections are substantially lower than those for the
perfect structure. In fact, for � = 0:1 the collapse load of the imperfect strut is about
half that of the perfect strut which results in mode B-III becoming active and truncating
the tensile side of the plastic collapse surface.
On the other hand, if �Y is either much greater than or much less than (�a=2l)2

the collapse load of an axially loaded pin-ended strut is expected to be reasonably
insensitive to the imperfection level. FE and analytical calculations of the collapse
surfaces in (�zz; �xz) space for a=l= 0:1 are shown in Fig. 11 for solid material yield
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Fig. 11. E&ect of imperfections on the collapse surface in (�zz ; �xz) space, for �Y =0:001 and 0.1 (a=l=0:1).

strains �Y=0:001 and 0.1. As expected the collapse surface is reasonably insensitive to
the imperfection level, with the collapse stresses decreasing by less than 10% for �=0:1.
We suggest here that the elasto-plastic collapse stresses of an imperfect octet-truss
lattice material idealised as a pin-jointed structure can be estimated by re-calibrating
the buckling collapse planes against the axial collapse load of an imperfect pin-ended
strut.

4. Comparison between measured and predicted modulus and yield strength

We proceed by comparing the predictions detailed in the previous sections with the
measured uniaxial compression strength of the octet-truss lattice material made from a
casting aluminium alloy (LM25) of composition Al–Si 7–Mg 0.3 (wt%).
A brief description of the manufacturing route for this lattice material is given below.

Triangulated layers with locating holes at the nodes, and tetrahedral cores with locating
pins at the nodes, were injection moulded in polystyrene. The octet-truss microstructure
was then constructed by adhering the triangulated layers in an “ABCABC...” arrange-
ment with alternating layers of the tetrahedral core. This polystyrene lattice was used as
the sacriFcial pattern in a “lost-wax” investment casting process to produce the LM25
lattice material. The octet-truss lattice material employed in this study comprised solid
cylindrical struts of radius a= 1 mm and length l= 14 mm, and the overall specimen
dimension was 280 mm× 140 mm× 60 mm, with Fve tetrahedral core layers. A pho-
tograph of the lattice material made in LM25 is shown in Fig. 12; the stacking of the
Fve tetrahedral core layers separated by the triangulated layers is clearly seen in this
picture.
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Fig. 12. Photograph of the octet-truss lattice material made from a casting aluminium alloy, LM25.

Fig. 13. (a) Comparison between the experimental observations and predictions of the �33 versus �33 response
of the LM25 lattice material. (b) Uniaxial tensile response of the as-cast LM25 aluminium alloy.

Uniaxial compression tests in the three-direction were performed using a standard
screw driven test machine. The load was measured by the load cell of the test machine
and used to deFne the nominal stress in the specimen. The average nominal strain
between two triangulated layers was measured via a clip gauge. The measured uniaxial
stress versus strain curve, �33 versus �33, is plotted in Fig. 13a for the nominal strain rate
�̇33=10−3 s−1. The stress versus strain curve exhibits a hardening response up to a strain
of approximately 5%. Beyond this strain, the response is softening corresponding to
plastic buckling of the struts. Bedding-in e&ects during the early stages of deformation
were detected as seen in Fig. 13a. These bedding-in e&ects occur at the nodes in the
lattice material: the pins of the tetrahedral core bed into the holes of the triangulated
layers during the initial stages of deformation.
In order to compare the measured and predicted sti&ness and strength of the lat-

tice material we measured the uniaxial tensile response of the as-cast LM25 struts;
the measured response is plotted in Fig. 13b. It was found that the LM25 can be
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Fig. 14. Comparison between the sti&ness and strength of the octet-truss lattice material, metallic foams and
the upper bounds for isotropic voided materials.

approximated by an elastic perfectly plastic solid with a Young’s modulus Es = 70
GPa and a yield stress �Y = 170 MPa. While these values of Es and �Y were used
in the analytical predictions, the FE calculations were performed using the measured
tensile stress versus strain response of the solid LM25, as given in Fig. 13b. The ana-
lytical and FE predictions of the strength of the lattice material are shown in Fig. 13a:
they are in good agreement with the experimental data (note that (�a=2l)2(1=�Y) ≈ 5
and thus the collapse of this material is not expected to be imperfection sensitive). On
the other hand, the calculations overestimate the sti&ness of the lattice material. This
is due to the bedding-in e&ects at nodes which were neither modelled in the analytical
nor the FE calculations.

5. A comparison between the sti�ness and strength of the octet-truss lattice
material and other porous materials

5.1. Octet-truss lattice material vs. metallic foams

It is of practical interest to compare the mechanical properties of lattice materials with
those of competing materials such as metallic foams. Here, the sti&ness and strength of
the octet-truss lattice material are compared in Fig. 14 with those of metallic foams,
for relative densities ;� in the range 0.01–0.1. The modulus E33 and strength �Y

33 of
the octet-truss lattice material are plotted in Fig. 14, while the experimentally observed
isotropic sti&ness and strength values for metallic foams

E
Es

= ;�2 (25a)
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and
�
�Y

= 0:25 ;�1:5 (25b)

are employed; see for example Ashby et al. (2000). Fig. 14 clearly shows that the
sti&ness and strength of the octet-truss lattice material exceed the corresponding values
for metallic foams by a factor between 3 and 10.

5.2. Octet-truss lattice material versus optimal microstructures

The design aim in the development of the octet-truss lattice material is to maximise
the strength (or sti&ness) to weight ratio of a nearly isotropic cellular material. To
get an estimate of the performance of the lattice material with regards to achieving
this goal we compare the properties of the octet-truss lattice material with the upper
bounds on the sti&ness and strength of isotropic voided materials. The H–S (Hashin and
Shtrikman, 1963) upper bound on Young’s modulus (with �s=1=3) is shown in Fig. 14.
The Fgure also contains an upper bound on the uniaxial yield strength, obtained by
transforming the linear H–S bound to the perfectly plastic case, using the prescription
of Suquet (1993). The sti&ness and strength of the octet-truss lattice material are seen
to be about half the theoretical upper bound values for ;� between 0.01 and 0.1.
A number of classes of two-phase composites are known to attain the H–S bounds on

the bulk and shear moduli. Readers are referred to Sigmund (1999) for details on these
optimal microstructures. Here, we brieQy review some of the microstructural features
of those optimal composites. Norris (1985) and Milton (1986) proposed di&erential
schemes for constructing composite structures with the extremal H–S bulk and shear
moduli. While Milton (1986) used a laminate microstructure, Norris (1985) employed
a coated sphere architecture. However, the procedures suggested by both these authors
are incremental and require an inFnite number of mixing processes. Moreover, the pro-
cedures do not speciFcally describe the underlying microstructure of the composite. On
the other hand, Francfort and Murat (1986) suggested the so-called “rank” laminates
which attain both the bulk and shear H–S bounds with a Fnite number of layering
directions. Rank laminates are obtained by a sequential process where at each stage
the previous laminate is laminated again with a single lamina (always the same) in a
new direction. Thus, a rank-n laminate is produced by n such successive laminations.
Francfort and Murat (1986) showed that while in the 2D case, isotropic rank-3 lami-
nates have the extremal bulk and shear moduli, in the 3D case rank-6 laminates are the
optimal microstructures. Thus, there exist a variety of multi-length-scale microstructures
with extremal values of the bulk and shear moduli. However, no single-length-scale
microstructure that attains both the bulk and shear H–S bounds has been proposed to
date.
The bulk and shear moduli of the octet-truss lattice material analysed in this paper

are about half the H–S upper bound values. However, the octet-truss lattice with solid
struts is a single-length-scale microstructure that can be manufactured relatively easily
and cheaply. Further, in contrast to the rank laminates, the octet-truss lattice material
has additional potential by virtue of its open structure for multi-functional applications.
For example, a sandwich plate with solid skins and the octet-truss lattice core can
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serve as a heat transfer element while simultaneously carrying structural loads. Such
applications of open-celled cellular materials are discussed by Evans et al. (1998).
Thus, the octet-truss lattice material represents a relatively cheap and weight-eEcient
structural material with potential multi-functional applications.

6. Concluding remarks

The e&ective mechanical properties of the octet-truss lattice material have been in-
vestigated through analytical and FE calculations. Analytical expressions have been
derived for the three independent moduli associated with the cubic symmetry of the
octet-truss lattice material. Good agreement is observed between the analytical predic-
tions and FE calculations, in support of the assumption that the contribution to the
overall sti&ness from the bending of the struts is small.
Analytical and FE calculations of the plastic collapse surfaces under three combina-

tions of stressing are presented. Again, good agreement is seen between the analytical
and FE calculations. An extension of Hill’s anisotropic yield criterion fails to capture
the form of the collapse surfaces accurately.
The collapse of the octet-truss lattice material by the elastic buckling of the struts

has also been addressed through analytical and FE calculations. To simplify the buck-
ling calculations, the struts are assumed to be pin-jointed. Thus, these calculations are
expected to be underestimate the collapse stresses. The collapse surface calculations
show that elastic buckling of the struts truncate the plastic collapse surfaces under
all combinations of macroscopic stressing other than biaxial tension and hydrostatic
tension. Further, the FE calculations conFrmed that shape imperfections of the struts
knock-down the collapse stresses only when the elastic buckling and plastic yielding
loads of the struts are approximately equal.
An octet-truss lattice material manufactured in LM25 aluminium alloy was tested

in uniaxial compression in the three-direction. Good agreement is seen between the
analytical and FE calculations of the strength and the experimental data. However, the
experimentally observed sti&ness was lower than the predicted value. This is attributed
to the bedding-in of the struts into the nodes during the initial stages of deformation.
The sti&ness and strength of the octet-truss lattice material compare favourably with

the corresponding properties of metallic foams. In fact, the sti&ness and strength values
of the octet-truss material are about half the theoretical maximum values for isotropic
voided materials: its high strength-to-weight ratio, relative ease of manufacture and
potential for multi-functional applications makes the octet-truss lattice material an at-
tractive alternative to metallic foams.
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